Let $A = \left\{ {\left( {x,y} \right):\,y = mx + 1} \right\}$ 

      $B = \left\{ {\left( {x,y} \right):\,\,{x^2} + 4{y^2} = 1} \right\}$ 

$C = \left\{ {\left( {\alpha ,\beta } \right):\,\left( {\alpha ,\beta } \right) \in A\,\,and\,\,\left( {\alpha ,\beta } \right) \in B\,\,and\,\alpha \, > 0} \right\}$ . 

If set $C$ is singleton set then sum of all possible values of $m$ is

  • A

    $0$

  • B

    $\frac{{\sqrt 3 }}{2}$

  • C

    $ - \frac{{\sqrt 3 }}{2}$

  • D

    none of these

Similar Questions

The length of the latus rectum of the ellipse $5{x^2} + 9{y^2} = 45$ is

The equation of the ellipse whose foci are $( \pm 5,\;0)$ and one of its directrix is $5x = 36$, is

The number of values of $c$ such that the straight line $y = 4x + c$ touches the curve $\frac{{{x^2}}}{4} + {y^2} = 1$ is

  • [IIT 1998]

The equation of tangent and normal at point $(3, -2)$ of ellipse $4{x^2} + 9{y^2} = 36$ are

On the ellipse $\frac{{{x^2}}}{{18}} + \frac{{{y^2}}}{8} = 1$ the point $M$ nearest to the line $2x - 3y + 25 = 0$ is