Gujarati
Hindi
10-2. Parabola, Ellipse, Hyperbola
normal

Let $A = \left\{ {\left( {x,y} \right):\,y = mx + 1} \right\}$ 

      $B = \left\{ {\left( {x,y} \right):\,\,{x^2} + 4{y^2} = 1} \right\}$ 

$C = \left\{ {\left( {\alpha ,\beta } \right):\,\left( {\alpha ,\beta } \right) \in A\,\,and\,\,\left( {\alpha ,\beta } \right) \in B\,\,and\,\alpha \, > 0} \right\}$ . 

If set $C$ is singleton set then sum of all possible values of $m$ is

A

$0$

B

$\frac{{\sqrt 3 }}{2}$

C

$ - \frac{{\sqrt 3 }}{2}$

D

none of these

Solution

$\mathrm{y}=\mathrm{mx}+1$ is tangent to ellipse

$\mathrm{x}^{2}+4 \mathrm{y}^{2}=1$ in ${I^{st}}$ quadrant $\therefore \mathrm{m}<0$

$\therefore 1=\mathrm{m}^{2}+\frac{1}{4}$

$m=\frac{\sqrt{3}}{2}$ or $-\frac{\sqrt{3}}{2}$

(reject)

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.