- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
normal
Let $A = \left\{ {\left( {x,y} \right):\,y = mx + 1} \right\}$
$B = \left\{ {\left( {x,y} \right):\,\,{x^2} + 4{y^2} = 1} \right\}$
$C = \left\{ {\left( {\alpha ,\beta } \right):\,\left( {\alpha ,\beta } \right) \in A\,\,and\,\,\left( {\alpha ,\beta } \right) \in B\,\,and\,\alpha \, > 0} \right\}$ .
If set $C$ is singleton set then sum of all possible values of $m$ is
A
$0$
B
$\frac{{\sqrt 3 }}{2}$
C
$ - \frac{{\sqrt 3 }}{2}$
D
none of these
Solution
$\mathrm{y}=\mathrm{mx}+1$ is tangent to ellipse
$\mathrm{x}^{2}+4 \mathrm{y}^{2}=1$ in ${I^{st}}$ quadrant $\therefore \mathrm{m}<0$
$\therefore 1=\mathrm{m}^{2}+\frac{1}{4}$
$m=\frac{\sqrt{3}}{2}$ or $-\frac{\sqrt{3}}{2}$
(reject)
Standard 11
Mathematics