1.Relation and Function
medium

ગણ $\{1,2,3,4\}$ પર સંબંધ $R$ એ $R =\{(1,2),\,(2,2),\,(1,1),\,(4,4)$ $(1,3),\,(3,3),\,(3,2)\}$ દ્વારા આપેલ છે. 

A

$R$ એ સ્વવાચક, સંમિત છે પરંતુ પરંપરિત નથી 

B

$R$ એ સ્વવાચક, પરંપરિત છે પરંતુ સંમિત નથી 

C

$R$એ સંમિત, પરંપરિત છે પરંતુ સ્વવાચક નથી 

D

$R$ એ એક સામ્ય સંબંધ છે 

Solution

$R=\{(1,2),\,(2,2),\,(1,1),\,(4,4),\,(1,3),\,(3,3),\,(3,2)\}$

It is seen that $(a, \,a) \in R,$ for every $a \in\{1,\,2,\,3,\,4\}$

$\therefore R$ is reflexive.

It is seen that $(1,\,2) \in R ,$ but $(2,\,1)\notin R$

$\therefore R$ is not symmetric.

Also, it is observed that $(a, \,b),\,(b, \,c) \in R \Rightarrow(a,\, c) \in R$ for all $a, \,b, \,c \in\{1,\,2,\,3,\,4\}$

$\therefore R$ is transitive.

Hence, $R$ is reflexive and transitive but not symmetric.

The correct answer is $B$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.