જો $f(x) = cos(\sqrt P \,x),$ જ્યા $P = [\lambda], ([.]$ = $G.I.F.)$ અને $f(x)$ નુ આવર્તમાન $\pi$ હોય તો,
$\lambda \, \in [4, 5]$
$\lambda \, \in [1, 2)$
$\lambda \, \in [4, 5)$
$\lambda$ ની કોઇ કિમત શક્ય નથી
જો વિધેય $f(x)=\sec ^{-1}\left(\frac{2 x}{5 x+3}\right)$ નો પ્રદેશ $[\alpha, \beta) U (\gamma, \delta]$ હોય, તો $|3 \alpha+10(\beta+\gamma)+21 \delta|=..........$
અહી $\mathrm{f}(\mathrm{x})$ એ $3$ ઘાતાંક વાળી બહુપદી છે કે જેથી $\mathrm{k}=2,3,4,5 $ માટે $\mathrm{f}(\mathrm{k})=-\frac{2}{\mathrm{k}}$ થાય છે તો $52-10 \mathrm{f}(10)$ ની કિમંત મેળવો.
જો વિધેય $f(x)$ માટે $f\left( {x + \frac{1}{x}} \right) = {x^2} + \frac{1}{{{x^2}}};$ હોય તો $(fof )$ $\sqrt {11} )$ =
જો વિધેય એ $f(x + y) = f(x)f(y)$ શરતનું પાલન કરે કે જયાં $x,\;y \in N$ હોય અને $f(1) = 3$અને $\sum\limits_{x = 1}^n {f(x) = 120} $ હોય તો $n$ ની કિંમત મેળવો
ધારોકે $f$ એ પ્રત્યેક $f(x+y)=f(x)+f(y)$ માટે $x, y \in N$ અને $f(1)=\frac{1}{5}$ નું સમાધાન કરતુ વિધેય છે. જો $\sum \limits_{n=1}^m \frac{f(n)}{n(n+1)(n+2)}=\frac{1}{12}$ હોય, તો $m=..........$