જો $S$ એ $k$ એ બધીજ વાસ્તવિક કિમંતો નો ગણ છે કે જેથી રેખાઓની સહંતિ $x +y + z = 2$ ; $2x +y - z = 3$ ; $3x + 2y + kz = 4$ એ એકાકી ઉકેલ ધરાવે છે તો $S$ એ . . . .
ખાલી ગણ
$R- \{0\}$ ને સમાન થાય
$\{0\}$ ને સમાન હોય
$R$ થાય
જો $a \ne 6,b,c$ એ $\left| {\,\begin{array}{*{20}{c}}a&{2b}&{2c}\\3&b&c\\4&a&b\end{array}\,} \right| = 0 $ નું સમાધાન કરે છે તો $abc = $
જો ${\Delta _r} = \left| {\begin{array}{*{20}{c}}
r&{2r - 1}&{3r - 2} \\
{\frac{n}{2}}&{n - 1}&a \\
{\frac{1}{2}n\left( {n - 1} \right)}&{{{\left( {n - 1} \right)}^2}}&{\frac{1}{2}\left( {n - 1} \right)\left( {3n - 4} \right)}
\end{array}} \right|$ તો $\sum\limits_{r = 1}^{n - 1} {{\Delta _r}} $ ની કિમત . . .
જો $\omega = - \frac{1}{2} + i\frac{{\sqrt 3 }}{2}$. તો $\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&{ - 1 - {\omega ^2}}&{{\omega ^2}}\\1&{{\omega ^2}}&{{\omega ^4}}\end{array}\,} \right|= . . . $
જો ${A_\lambda } = \left( {\begin{array}{*{20}{c}}
\lambda &{\lambda - 1}\\
{\lambda - 1}&\lambda
\end{array}} \right);\,\lambda \in N$ હોય તો $|A_1| + |A_2| + ..... + |A_{300}|$ મેળવો.
જો સમીકરણો $x +y + z = 6$ ; $x + 2y + 3z= 10$ ; $x + 2y + \lambda z = 0$ એ એકાકી ઉકેલ ધરાવે છે તો $\lambda $ ની કિમંત . . . શક્ય નથી.