माना $S, k$ के ऐसे सभी वास्तविक मानों का समुच्चय है जिनके लिए निम्न रैखिक समीकरणों के निकाय का एक अद्वितीय हल है। $x+y+z=2$ $2 x+y-z=3$ $3 x+2 y+k z=4$ तो, $S$ है

  • [JEE MAIN 2018]
  • A

    एक रिक्त समुच्चय

  • B

    $R -\{0\}$ के समान

  • C

    $\{0\}$ के समान

  • D

    $R$ के समान

Similar Questions

यदि $\left|\begin{array}{ccc}x+1 & x & x \\ x & x+\lambda & x \\ x & x & x+\lambda^2\end{array}\right|=\frac{9}{8}(103 x+81)$ है, तो $\lambda, \frac{\lambda}{3}$ किस समीकरण के मूल हैं ?

  • [JEE MAIN 2023]

यदि समीकरण निकाय $2 x +3 y - z =0$, $x + ky -2 z =0$ तथा $2 x - y + z =0$ का एक अतुच्छ (non-trival) हल $( x , y , z )$ है, तो $\frac{ x }{ y }+\frac{ y }{ z }+\frac{ z }{ x }+ k$ बराबर है

  • [JEE MAIN 2019]

माना समीकरण निकाय $x+2 y+3 z=5$, $2 \mathrm{x}+3 \mathrm{y}+\mathrm{z}=9,4 \mathrm{x}+3 \mathrm{y}+\lambda \mathrm{z}=\mu$ के अनंत हल है। तो $\lambda+2 \mu$ बराबर है :

  • [JEE MAIN 2024]

सारणिक $\left| {{\rm{ }}\begin{array}{*{20}{c}}1&2&3\\3&5&7\\8&{14}&{20}\end{array}} \right|$ का मान होगा

समीकरण $\left| {\,\begin{array}{*{20}{c}}{1 + x}&1&1\\1&{1 + x}&1\\1&1&{1 + x}\end{array}\,} \right| = 0$  के मूल हैं