माना $P =\{\theta: \sin \theta-\cos \theta=\sqrt{2} \cos \theta\}$ तथा $Q =\{\theta: \sin \theta+\cos \theta=\sqrt{2} \sin \theta\}$ दो समुच्चय हैं, तो
$P \subset Q$ and $Q - P \ne \phi $
$Q \not\subset P$
$P = Q$
$P \not\subset Q$
यदि $\sin (A + B) =1$ तथा $\cos (A - B) = \frac{{\sqrt 3 }}{2},$ तो $A$ तथा $B$ के न्यूनतम धनात्मक मान हैं
यदि $\sin \theta = \sqrt 3 \cos \theta , - \pi < \theta < 0$, तो $\theta = $
यदि समीकरण $4 \cos \theta+5 \sin \theta=1$. का हल $\alpha,-\frac{\pi}{2}<\alpha<\frac{\pi}{2}$ है, तो $\tan \alpha$ का मान है
यदि $\cos \theta = - \frac{1}{{\sqrt 2 }}$ और $\tan \theta = 1$, तो $\theta $ का सर्वव्यापक मान है
यदि $\sin 2x + \sin 4x = 2\sin 3x,$ तब $x = $