The mean and the standard deviation $(s.d.)$  of five observations are $9$ and $0,$ respectively. If one of the observations is changed such that the mean of the new set of five observations becomes $10,$  then their $s.d.$  is?

  • [JEE MAIN 2018]
  • A

    $0$

  • B

    $4$

  • C

    $2$

  • D

    $1$

Similar Questions

The mean and standard deviation of $15$ observations were found to be $12$ and $3$ respectively. On rechecking it was found that an observation was read as $10$ in place of $12$ . If $\mu$ and $\sigma^2$ denote the mean and variance of the correct observations respectively, then $15\left(\mu+\mu^2+\sigma^2\right)$ is equal to$...................$

  • [JEE MAIN 2024]

If the variance of the following frequency distribution is $50$ then $x$ is equal to:

Class $10-20$ $20-30$ $30-40$
Frequency $2$ $x$ $2$

  • [JEE MAIN 2020]

If the variance of the first $n$ natural numbers is $10$ and the variance of the first m even natural numbers is $16$, then $m + n$ is equal to

  • [JEE MAIN 2020]

If the mean of the frequency distribution

Class: $0-10$ $10-20$ $20-30$ $30-40$ $40-50$
Frequency $2$ $3$ $x$ $5$ $4$

is $28$ , then its variance is $........$.

  • [JEE MAIN 2023]

Mean and variance of a set of $6$ terms is $11$ and $24$ respectively and the mean and variance of another set of $3$ terms is $14$ and $36$ respectively. Then variance of all $9$ terms is equal to