જો સંબંધ $R =\{(4, 5); (1, 4);(4, 6);(7, 6); (3, 7)\}$ હોય તો ${R^{ - 1}}oR$=
$\{(1, 1), (4, 4), (4, 7), (7, 4), (7, 7), (3, 3)\}$
$\{(1, 1), (4, 4), (7, 7), (3, 3)\}$
$\{(1, 5), (1, 6), (3, 6)\}$
એકપણ નહીં.
જો $R= \{(3, 3) (5, 5), (9, 9), (12, 12), (5, 12), (3, 9), (3, 12), (3, 5)\}$ એ ગણ $A= \{3, 5, 9, 12\}.$ પરનો સંબધ હોય તો $R$ એ . . . .
જો $N$ એ $100$ કરતા વધારે પ્રાક્રુતિક સંખ્યાઓનો ગણ છે અને સંબંધ $R$ પર વ્યાખિયયિત છે :$R = \{(x,y) \in \,N × N :$ the numbers સંખ્યાઓ $x$ અને $y$ ને ઓછામા ઓછા બે વિભજ્યો છે.$\}.$ હોય તો $R$ એ ........
$R$ એ $\{11, 12, 13\}$ થી $\{8, 10, 12\}$ પર $y = x - 3$ દ્વારા વ્યાખ્યાયિત હોય તો ${R^{ - 1}}$ મેળવો.
સંબંધ $R$ એ $n \times n$ કક્ષાના વાસ્તવિક શ્રેણિક $A$ અને $B$ માટે આ મુજબ વ્યાખ્યાયિત છે : $"ARB$ તોજ અસ્તિત્વ ધરાવે જો કોઈ શૂન્યતર શ્રેણિક $P$ હોય કે જેથી $PAP ^{-1}= B "$ થાય તો આપેલ પૈકી ક્યૂ વિધાન સત્ય છે ?
ગણ $\{1,2,3,4,5,6\}$ પર વ્યાખ્યાયિત સંબંધ $R =\{(a, b): b=a+1\}$ એ સ્વવાચક, સંમિત કે પરંપરિત સંબંધ છે કે નહિ તે ચકાસો.