જો $z$ માટે $\left| z \right| = 1$ અને $z = 1 - \vec z$ તો.
વિધાન $1$ : $z$ એ વાસ્તવિક સંખ્યા છે.
વિધાન $2$ : $z$ નો મુખ્ય કોણાંક $\frac{\pi }{3}$ છે.
વિધાન $1$ સાચું છે વિધાન $2$ પણ સાચું છે. તથા વિધાન $2$ એ વિધાન $1$ ની સાચી સમજૂતી આપે છે.
વિધાન $1$ ખોટું છે. પરંતુ વિધાન $2$ સાચું છે.
વિધાન $1$ સાચું છે. પરંતુ વિધાન $2$ ખોટું છે.
વિધાન $1$ સાચું છે વિધાન $2$ પણ સાચું છે. પરંતુ વિધાન $2$ એ વિધાન $1$ ની સાચી સમજૂતી આપતું નથી.
જો $z$ શુદ્ધ વાસ્તવિક સંખ્યા છે કે જેથી ${\mathop{\rm Re}\nolimits} (z) < 0$, તો $arg(z)$ = . . .. .
જો $z$ એ સંકર સંખ્યા હોય અને $\frac{{z - 1}}{{z + 1}}$ એ શુદ્ધ કાલ્પનિક સંખ્યા હોય તો . . . .
બે સંકર સંખ્યા ${z_1}$ અને ${z_2}$ માટે આપેલ પૈકી . . . સત્ય છે .
જો ${(\sqrt 8 + i)^{50}} = {3^{49}}(a + ib)$ તો ${a^2} + {b^2}$ = . . .
જો $z_1$ અને $z_2$ એ એવી બે સંકર સંખ્યાઓ છે કે જેથી $|z_1 + z_2|$ = $1$ અને $\left| {z_1^2 + z_2^2} \right|$ = $25$ થાય તો $\left| {z_1^3 + z_2^3} \right|$ ની ન્યૂનતમ કિમત મેળવો