Let $z_1$ and $z_2$ be any two non-zero complex numbers such that $3\left| {{z_1}} \right| = 4\left| {{z_2}} \right|$. If $z = \frac{{3{z_1}}}{{2{z_2}}} + \frac{{2{z_2}}}{{3{z_1}}}$ then

  • [JEE MAIN 2019]
  • A

    Re$(z) = 0$

  • B

    $\left| z \right| = \sqrt {\frac{5}{2}} $

  • C

    $\left| z \right| = \frac{1}{2}\sqrt {\frac{{17}}{2}} $

  • D

    Im$(z) \neq 0$

Similar Questions

If $z = x + iy$ satisfies $|z|-2=0$ and $|z-i|-|z+5 i|=0$, then

  • [JEE MAIN 2022]

If ${z_1}$ and ${z_2}$ are two complex numbers satisfying the equation $\left| \frac{z_1 +z_2}{z_1 - z_2} \right|=1$, then $\frac{{{z_1}}}{{{z_2}}}$ is a number which is

If $0 < amp{\rm{ (z)}} < \pi {\rm{,}}$then $amp(z)-amp ( - z) = $

If $|{z_1}| = |{z_2}| = .......... = |{z_n}| = 1,$ then the value of $|{z_1} + {z_2} + {z_3} + ............. + {z_n}|$=

Let $z _{1}$ and $z _{2}$ be two complex numbers such that $\overline{ z }_{1}=i \overline{ z }_{2}$ and $\arg \left(\frac{ z _{1}}{\overline{ z }_{2}}\right)=\pi$. Then

  • [JEE MAIN 2022]