माना $S=\{1,2,3, \ldots ., 100\}$, तो $S$ के उन सभी अरिक्त (non-empty) उपसमुच्चयों $A$ जिनके अवयवों का गुणनफल सम है, की संख्या है
$2^{100} -1$
$2^{50} (2^{50} -1)$
$2^{50} -1$
$2^{50} + 1$
यदि ${A_1},\,{A_2},\,{A_3},........,{A_{30}}$ तीस समुच्चय इस प्रकार हैं कि प्रत्येक में $5$ अवयव हैं तथा ${B_1},\,{B_2}$, ......., $Bn, n $ समुच्चय इस प्रकार हैं कि प्रत्येक में $3$ अवयव हैं। माना $\bigcup\limits_{i = 1}^{30} {{A_i}} = \bigcup\limits_{j = 1}^n {{B_j}} $$= S$ तथा $ S$ का प्रत्येक अवयव $A'_is$ के $10$ वें तथा $B'_js$ के $9$ वें को पूर्णत: संतुष्ट करता है, तो $n$ बराबर है
समुच्चय $\left\{n \in \mathbb{Z}:\left|n^2-10 n+19\right|<6\right\}$ में अवयवों की संख्या है____________.
माना $A =\{ n \in N :$ म.स.प. $( n , 45)=1\}$ तथा माना $B =\{2 k : k \in\{1,2, \ldots, 100\}\}$ है। तब $A \cap B$ के सभी अवयवों का योगफल है
माना $S=\{x \in R: x \geq 0$ तथा $2|\sqrt{x}-3|+\sqrt{x}(\sqrt{x}-6)+6=0\}$ तो $S$ .........
माना $A =\left\{ n \in N \mid n ^{2} \leq n +10,000\right\}, B =\{3 k +1 \mid k \in N \}$ तथा $C =\{2 k \mid k \in N \}$ हैं, तो समुच्चय $A \cap( B - C )$ के सभी अवयवों का योगफल बराबर है ।