The locus of the foot of the perpendicular from the centre of the hyperbola $xy = c^2$ on a variable tangent is :
$(x^2 - y^2)^2 = 4c^2 xy$
$(x^2 + y^2)^2 = 2c^2 xy$
$(x^2 + y^2) = 4x^2 xy$
$(x^2 + y^2)^2 = 4c^2 xy$
Let $P \left( x _0, y _0\right)$ be the point on the hyperbola $3 x ^2-4 y ^2$ $=36$, which is nearest to the line $3 x+2 y=1$. Then $\sqrt{2}\left( y _0- x _0\right)$ is equal to :
The eccentricity of a hyperbola passing through the points $(3, 0)$, $(3\sqrt 2 ,\;2)$ will be
If the foci of the ellipse $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{{b^2}}} = 1$ coincide with the foci of the hyperbola $\frac{{{x^2}}}{{144}} - \frac{{{y^2}}}{{81}} = \frac{1}{{25}},$ then $b^2$ is equal to
For hyperbola $\frac{{{x^2}}}{{{{\cos }^2}\alpha }} - \frac{{{y^2}}}{{{{\sin }^2}\alpha }} = 1$ which of the following remain constant if $\alpha$ varies
Let $P(6,3)$ be a point on the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$. If the normal at the point $P$ intersects the $x$-axis at $(9,0)$, then the eccentricity of the hyperbola is