माना $S _{ n }$ एक समान्तर श्रेढ़ी के प्रथम $n$ पदों के योग को दर्शाता है। यदि $S_{4}=16$ तथा $S_{6}=-48$ है, तो $S_{10}$ बराबर है
$-410$
$-260$
$-320$
$-380$
यदि $\left\{ a _{ i }\right\}_{ i =1}^{ n }$ (जहाँ $n$ सम पूर्णांक है) समान्तर श्रेढ़ी है जिसका सार्वअन्तर $1$ तथा $\sum \limits_{ i =1}^{ n } a _{ i }=192$, $\sum \limits_{ i =1}^{ n / 2} a _{2 i }=120$ है, तो $n$ बराबर है:
भिन्न $A.P.$ बनाई गई हैं, जिनके प्रथम पद $100$ , अंतिम पद $199$ तथा सार्व अंतर पुर्णांक हैं। इस प्रकार की सभी $A.P.$, जिनमें कम से कम $3$ पद तथा अधिक से अधिक $33$ पद हैं, के सार्व अंतरों का योगफल है
माना $a, b, c$ एक समान्तर श्रेढ़ी में है। माना त्रिभुज जिसके शीर्ष बिन्दु $( a , c ),(2, b )$ तथा $( a , b )$ है, का केन्द्रक $\left(\frac{10}{3}, \frac{7}{3}\right)$ है। यदि समीकरण, $a x ^{2}+ bx +1=0$ के मूल $\alpha$ तथा $\beta$ है, तो $\alpha^{2}+\beta^{2}-\alpha \beta$ का मान है
समांतर श्रेणी $3,7,11,15...$ के कितने पदों का योग $406$ होगा
एक राशि, दूसरी राशि की व्युत्क्रम है। यदि दोनों राशियों का समान्तर माध्य $\frac{{13}}{{12}}$ है, तो राशियाँ होंगी