मान लें $E$ तथा $F$ दो घटनाएँ इस प्रकार हैं कि $P ( E )=\frac{3}{5}, P ( F )=\frac{3}{10}$ और $P ( E \cap F )=\frac{1}{5}$ तब क्या $E$ तथा $F$ स्वतंत्र हैं?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that $P(E)=\frac{3}{5}, \,P(F)=\frac{3}{10}$ and $P(E F)=P(E \cap F)=\frac{1}{5}$

$P(E) .P(F)=\frac{3}{5} \times \frac{3}{10}=\frac{9}{50} \neq \frac{1}{5}$

$\Rightarrow P(E). P(F) \neq P(E F)$

Therefore,  $\mathrm{E}$ and $\mathrm{F}$ are not independent.

Similar Questions

$52$ ताशों की एक गड्डी से एक ताश निकाला जाता है। एक जुआरी शर्त लगाता है कि यह हुकुम का पत्ता है या इक्का उसके इस शर्त को जीतने के प्रतिकूल संयोगानुपात है

माना स्वतंत्र घटनाओं $A$ तथा $B$ के लिए $P ( A )= p$ तथा $P ( B )=2 p$ हैं। तो $p$ का अधिकतम मान, जिसके लिए $P ( A$ तथा $B$ में से ठीक एक घटित होती है $)=\frac{5}{9}$ है

  • [JEE MAIN 2021]

$A$ और $B$ ऐसी घटनाएँ दी गई हैं जहाँ $P(A)=\frac{1}{2}, P(A \cup B)=\frac{3}{5}$ तथा $P ( B )=p$
$\bar{p}$ का मान ज्ञात कीजिए यदि घटनाएँ परस्पर अपवर्जी हैं।

$A$ व $B$ दो स्वतंत्र घटनायें हैं। दोनों $A$ व $B$ के घटने की प्रायिकता $\frac{1}{6}$ है तथा उनमें से किसी के भी न घटने की प्रायिकता $\frac{1}{3}$ हैं, तो दोनों घटनाओं की प्रायिकतायें क्रमश: हैं

सिद्ध कीजिए कि यदि $E$ और $F$ दो स्वतंत्र घटनाएँ हैं तो $E$ और $F ^{\prime}$ भी स्वतंत्र होंगी।