ધારોકે $A =\{1,2,3,4, \ldots ., 10\}$ અને $B =\{0,1,2,3,4\}$. સંબંધ $R =\left\{( a , b ) \in A \times A : 2( a - b )^2+3( a - b ) \in B \right\}$ માં ધટકોની સંખ્યા $..........$ છે.
$12$
$14$
$16$
$18$
પૂર્ણાકોના ગણ $\mathrm{Z}$ પર વ્યાખ્યાયિત સંબંધ $\mathrm{R} =\{(\mathrm{x}, \mathrm{y}): \mathrm{x}-\mathrm{y}$ એ પૂર્ણાક છે. $\} $ સ્વવાચક, સંમિત અથવા પરંપરિત સંબંધ છે કે નહિ તે નક્કી કરો ?
જે સ્વવાચક અને સંમિત હોય પરંતુ પરંપરિત ના હોય તેવા એક સંબંધનું ઉદાહરણ આપો
અહી $R$ એ વાસ્તવિક સંખ્યા પરનો સંબંધ છે. કે જે $R=\{(a, b): 3 a-3 b+\sqrt{7}$ એ અસંમેય સંખ્યા છે $\}$. તો $R$ એ . . . .
સાબિત કરો કે ગણ $A =\{x \in Z : 0 \leq x \leq 12\},$ પર વ્યાખ્યાયિત નીચે દર્શાવેલ પ્રત્યેક સંબંધ $R$, એ સામ્ય સંબંધ છે. તથા $1$ સાથે સંબંધ $R$ ધરાવતા ઘટકોનો ગણ શોધો.
$R =\{(a, b):|a-b| $ એ $4$ નો ગુણિત છે. $\} $
સાબિત કરો કે $R$ પર વ્યાખ્યાયિત સંબંધ $R =\{(a, b): a \leq b\},$ એ સ્વવાચક અને પરંપરિત છે, પરંતુ સંમિત સંબંધ નથી.