मान लीजिए कि $f: N \rightarrow Y , f(x)=4 x+3,$ द्वारा परिभाषित एक फलन है, जहाँ $Y =\{y \in N : y=4 x+3$ किसी $x \in N$ के लिए $\}$। सिद्ध कीजिए कि $f$ व्युत्क्रमणीय है। प्रतिलोम फलन भी ज्ञात कीजिए।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Consider an arbitrary element $y$ of $Y$. By the definition of $Y, y=4 x+3$ for some $x$ in the domain $N$. This shows that $x=\frac{(y-3)}{4} .$ Define $g: Y \rightarrow N$ by $g(y)=\frac{(y-3)}{4} .$ Now, $gof\,(x)=g(f(x))=g(4 x+3)$ $=\frac{(4 x+3-3)}{4}=x$ and $fog\,(y)=f(g(y))=f\left(\frac{(y-3)}{4}\right)$ $=\frac{4(y-3)}{4}+3=y-3+3=y .$ This shows that $gof= I _{ N }$ and $f o g=I_{Y}$, which implies that $f$ is invertible and $g$ is the inverse of $f$

Similar Questions

मान लीजिए कि $S =\{1,2,3\}$ है। निर्धारित कीजिए कि क्या नीचे परिभाषित फलन $f: S \rightarrow S$ के प्रतिलोम फलन हैं। $f^{-1},$ ज्ञात कीजिए यदि इसका अस्तित्व है।

$f=\{(1,3),(3,2),(2,1)\}$

$f(x)=4 x+3$ द्वरा प्रद्त फलन $f: R \rightarrow R$ पर विचार कीजिए। सिद्ध कीजिए कि $f$ व्युत्क्रमणीय है। $f$ का प्रतिलोम फलन ज्ञात कीजिए।

$y=5 \log x$ का प्रतिलोम है

  • [JEE MAIN 2021]

मान लीजिए कि $S =\{a, b, c\}$ तथा $T =\{1,2,3\}$ है। $S$ से $T$ तक के निम्नलिखित फलनों $F$ के लिए $F ^{-1}$ ज्ञात कीजिए, यदि उसका अस्तित्व है :

$F =\{(a, 3),(b, 2),(c, 1)\}$

$f( x )=\frac{8^{2 x }-8^{-2 x }}{8^{2 x }+8^{-2 x }}, x \in(-1,1)$ का व्युत्क्रम फलन है

  • [JEE MAIN 2020]