$A=\{a, e, i, o, u\}$ અને $B=\{a, b, c, d\}$ લો. $A$ એ $B$ નો ઉપગણ છે ? ના (શા માટે ?). $B$ એ $A$ નો ઉપગણ છે? ના (શા માટે ?)
$A=\{a, e, i, o, u\}$ and $B=\{a, b, c, d\}$
( $i$ ) For a set to be a subset of another set, it needs to have all elements present in the another
set.
In set $A,\{e, i, o, u\}$ elements are present but these are not present in set $B$
Hence $A$ is not a subset of $B$.
(ii) For this condition to be true, are elements of sets $B$ should be present in set $A$
In set $B,\{b, c, d\}$ elements are present but these elements are not present in set $A$
Hence $B$ is not a subset of $A$
ગણ છે, $\phi, A=\{1,3\}, B=\{1,5,9\}, C=\{1,3,5,7,9\}$ આપેલા છે.
નીચે દર્શાવેલી દરેક ગણની જોડીની વચ્ચે સંજ્ઞા $\subset$ અથવા $ \not\subset $ સમાવિષ્ટ કરો : $A, \ldots B$
વિધાન સત્ય છે કે અસત્ય છે તે નક્કી કરો : જો $x \in A$ અને $A \not\subset B$, તો $x \in B$
ગણને યાદીની રીતે લખો : $D = \{ x:x$ એ $60$ નો ધન અવયવ હોય તેવી અવિભાજ્ય સંખ્યા છે. $\} $
$A=\{1,3,5\}, B=\{2,4,6\}$ અને $C=\{0,2,4,6,8\},$ આપેલ ગણ છે. આ ત્રણ ગણ $A, B$ અને $C$ માટે નીચેનામાંથી કયા ગણને સાર્વત્રિક ગણ તરીકે લઈ શકાય. $\varnothing$
ગણને ગુણધર્મની રીતે લખો : $\{ 3,6,9,12\}$