ગણ છે, $\phi, A=\{1,3\}, B=\{1,5,9\}, C=\{1,3,5,7,9\}$ આપેલા છે.
નીચે દર્શાવેલી દરેક ગણની જોડીની વચ્ચે સંજ્ઞા $\subset$ અથવા $ \not\subset $ સમાવિષ્ટ કરો : $A \ldots C$
વિધાન સત્ય બને તે રીતે ખાલી જગ્યામાં સંજ્ઞા $\subset$ અથવા $ \not\subset $ પૂરો: $\{ x:x$ એ તમારી શાળાના ધોરણ $\mathrm{XI}$ નો વિદ્યાર્થી છે. $\} \ldots \{ x:x$ એ તમારી શાળાના વિદ્યાર્થી છે. $\} $
ગણ $\{ (a,\,b):2{a^2} + 3{b^2} = 35,\;a,\,b \in Z\} $ એ . . . ઘટકો ધરાવે છે.
ગણ છે, $\phi, A=\{1,3\}, B=\{1,5,9\}, C=\{1,3,5,7,9\}$ આપેલા છે.
નીચે દર્શાવેલી દરેક ગણની જોડીની વચ્ચે સંજ્ઞા $\subset$ અથવા $ \not\subset $ સમાવિષ્ટ કરો :
$\phi \,....\,B$ $A \,....\,B$ $A\,....\,C$ $B\,....\,C$
$A=\{1,2,\{3,4\}, 5\}$ છે. વિધાન સત્ય છે કે અસત્ય છે ? શા માટે ? : $\{ 3,4\} \in A$