Let $A=\{1,2,3\}, B=\{3,4\}$ and $C=\{4,5,6\} .$ Find

$(A \times B) \cap(A \times C)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Now $( A \times B )=\{(1,3),(1,4),(2,3),(2,4),(3,3),(3,4)\}$

and $( A \times C )=\{(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)\}$

Therefore, $(A \times B) \cap(A \times C)=\{(1,4),(2,4),(3,4)\}$

Similar Questions

If two sets $A$ and $B$ are having $99$ elements in common, then the number of elements common to each of the sets $A \times B$ and $B \times A$ are

If $P,Q$ and $R$ are subsets of a set $A$, then $R × (P^c  \cup  Q^c)^c =$

If $\left(\frac{x}{3}+1, y-\frac{2}{3}\right)=\left(\frac{5}{3}, \frac{1}{3}\right),$ find the values of $x$ and $y$

If $P=\{a, b, c\}$ and $Q=\{r\},$ form the sets $P \times Q$ and $P \times Q$ Are these two products equal?

If $A \times B =\{(p, q),(p, r),(m, q),(m, r)\},$ find $A$ and $B$