Let $A=\{1,2,3\}, B=\{3,4\}$ and $C=\{4,5,6\} .$ Find

$(A \times B) \cap(A \times C)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Now $( A \times B )=\{(1,3),(1,4),(2,3),(2,4),(3,3),(3,4)\}$

and $( A \times C )=\{(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)\}$

Therefore, $(A \times B) \cap(A \times C)=\{(1,4),(2,4),(3,4)\}$

Similar Questions

State whether each of the following statements are true or false. If the statement is false, rewrite the given statement correctly.

If $P=\{m, n\}$ and $Q=\{n, m\},$ then $P \times Q=\{(m, n),(n, m)\}.$

If $A = \{ 2,\,4,\,5\} ,\,\,B = \{ 7,\,\,8,\,9\} ,$ then $n(A \times B)$ is equal to

If two sets $A$ and $B$ have $99$ elements in common, then the number of elements common to the sets $A \times B$ and $B \times  A$ is equal to

Let $A = \{1, 2, 3, 4, 5\}; B = \{2, 3, 6, 7\}$. Then the number of elements in $(A × B) \cap (B × A)$ is

If $A = \{1, 2, 4\}, B = \{2, 4, 5\}, C = \{2, 5\},$ then $(A -B) × (B -C)$ is