मान लीजिए कि $f: w \rightarrow W , f(n)=n-1$, यदि $n$ विषम है तथा $f(n)=n+1$, यदि $n$ सम है, द्वारा परिभाषित है। सिद्ध कीजिए कि $f$ व्युत्क्रमणीय है। $f$ का प्रतिलोम ज्ञात कीजिए। यहाँ $W$ समस्त पूर्णाकों का समुच्चय है।
It is given that:
$f: W \rightarrow W$ is defined as $f(n)=\left\{\begin{array}{ll}n-1 & \text { If } n \text { is odd } \\ n+1 & \text { If } n \text { is even }\end{array}\right.$
For one-one
Let $f(n)=f(m)$
It can be observed that if $n$ is odd and $m$ is even, then we will have $n-1=m+1$
$\Rightarrow n-m=2$
However, this is impossible. Similarly, the possibility of $n$ being even and $m$ being odd can also be ignored under a similar argument.
$\therefore$ Both $n$ and $m$ must be either odd or even. Now, if both $n$ and $m$ are odd,
Then, we have $f(n)=f(m)$
$\Rightarrow n-1=m-1$
$\Rightarrow n=m$
Again, if both $n$ and $m$ are even,
Then, we have
$f ( n )= f ( m )$
$\Rightarrow n +1= m +1$
$\Rightarrow n=m$
$\therefore f$ is one-one.
For onto
It is clear that any odd number $2 r+1$ in co-domain $N$ is the image of $2 r$ in domain $N$ and any even number $2 r$ in co-domain $N$ is the image of $2 r +1$ in domain $N$.
$\therefore f$ is onto.
Hence, $f$ is an invertible function.
Let us define $g: W \rightarrow W$ as $(m)=\left\{\begin{array}{ll}m+1 & \text { If } m \text { is even } \\ m-1 & \text { If } m \text { is odd }\end{array}\right.$
Now, when $n$ is odd
$g o(n)=g(f(n))=g(n-1)=n-1+1=n$ and
When $n$ is even
$g o(n)=g(f(n))=g(n+1)=n+1-1=n$
Similarly,
When $m$ is odd
$f o(m)=f(g(m))=f(m-1)=m-1+1=m$ and
When $m$ is even $f o(m)=f(g(m))=f(m+1)=m+1-1=m$
$\therefore $ $g o f= I w$ and $f o g= Iw$
Thus, $f$ is invertible and the inverse of $f$ is given by $f^{1}=g$, which is the same as $f$ .
Hence, the inverse of $f$ is $f$ itself.
कारण सहित बतलाइए कि क्या निम्नलिखित फलनों के प्रतिलोम हैं:
$g:\{5,6,7,8\} \rightarrow\{1,2,3,4\}$ जहाँ
$g=\{(5,4),(6,3),(7,4),(8,2)\}$
निम्नलिखित फलनों में से कौनसा फलन प्रतिलोम फलन है
निम्न में से कौनसा फलन प्रतिलोम फलन है
मान लीजिए कि $S =\{a, b, c\}$ तथा $T =\{1,2,3\}$ है। $S$ से $T$ तक के निम्नलिखित फलनों $F$ के लिए $F ^{-1}$ ज्ञात कीजिए, यदि उसका अस्तित्व है :
$F =\{(a, 2),(b, 1),(c, 1)\}$
यदि $f(x) = \frac{x}{{1 + x}}$, तब ${f^{ - 1}}(x)$ का मान होगा