Let $\alpha$ and $\beta$ be the roots of the equation $5 x^{2}+6 x-2=0 .$ If $S_{n}=\alpha^{n}+\beta^{n}, n=1,2,3 \ldots$ then :

  • [JEE MAIN 2020]
  • A

    $5 \mathrm{S}_{6}+6 \mathrm{S}_{5}=2 \mathrm{S}_{4}$

  • B

    $5 \mathrm{S}_{6}+6 \mathrm{S}_{5}+2 \mathrm{S}_{4}=0$

  • C

    $6 \mathrm{S}_{6}+5 \mathrm{S}_{5}+2 \mathrm{S}_{4}=0$

  • D

    $6 \mathrm{S}_{6}+5 \mathrm{S}_{5}=2 \mathrm{S}_{4}$

Similar Questions

Let $x, y, z$ be positive reals. Which of the following implies $x=y=z$ ?

$I.$ $x^3+y^3+z^3=3 x y z$

$II.$ $x^3+y^2 z+y z^2=3 x y z$

$III.$ $x^3+y^2 z+z^2 x=3 x y z$

$IV.$ $(x+y+z)^3=27 x y z$

  • [KVPY 2015]

Let $x_1, x_2, \ldots, x_6$ be the roots of the polynomial equation $x^6+2 x^5+4 x^4+8 x^3+16 x^2+32 x+64=0$. Then,

  • [KVPY 2017]

If $\alpha$ and $\beta$ are the distinct roots of the equation $x^{2}+(3)^{1 / 4} x+3^{1 / 2}=0$, then the value of $\alpha^{96}\left(\alpha^{12}-\right.1) +\beta^{96}\left(\beta^{12}-1\right)$ is equal to:

  • [JEE MAIN 2021]

In a cubic equation coefficient of $x^2$ is zero and remaining coefficient are real has one root $\alpha = 3 + 4\, i$ and remaining roots are $\beta$ and $\gamma$ then $\alpha \beta \gamma$ is :-

If $|{x^2} - x - 6| = x + 2$, then the values of $x$ are