Let $\alpha$ and $\beta$ be the roots of the equation $5 x^{2}+6 x-2=0 .$ If $S_{n}=\alpha^{n}+\beta^{n}, n=1,2,3 \ldots$ then :

  • [JEE MAIN 2020]
  • A

    $5 \mathrm{S}_{6}+6 \mathrm{S}_{5}=2 \mathrm{S}_{4}$

  • B

    $5 \mathrm{S}_{6}+6 \mathrm{S}_{5}+2 \mathrm{S}_{4}=0$

  • C

    $6 \mathrm{S}_{6}+5 \mathrm{S}_{5}+2 \mathrm{S}_{4}=0$

  • D

    $6 \mathrm{S}_{6}+5 \mathrm{S}_{5}=2 \mathrm{S}_{4}$

Similar Questions

The maximum value $M$ of $3^x+5^x-9^x+15^x-25^x$, as $x$ varies over reals, satisfies

  • [KVPY 2012]

Number of positive integral values of $'K'$ for which the equation $k = \left| {x + \left| {2x - 1} \right|} \right| - \left| {x - \left| {2x - 1} \right|} \right|$ has exactly three real solutions, is

The number of integers $a$ in the interval $[1,2014]$ for which the system of equations $x+y=a$, $\frac{x^2}{x-1}+\frac{y^2}{y-1}=4$ has finitely many solutions is

  • [KVPY 2014]

Let $r_1, r_2, r_3$ be roots of equation $x^3 -2x^2 + 4x + 5074 = 0$, then the value of $(r_1 + 2)(r_2 + 2)(r_3 + 2)$ is

If $a, b, c, d$ and $p$ are distinct real numbers such that $(a^2 + b^2 + c^2)\,p^2 -2p\, (ab + bc + cd) + (b^2 + c^2 + d^2)  \le 0$, then

  • [AIEEE 2012]