समुच्चय $\left\{\mathrm{n} \in \mathbb{N}: 10 \leq \mathrm{n} \leq 100\right.$ तथा $3^{\mathrm{n}}-3,7$ का एक गुणज है \} में अवयवों की संख्या है :

  • [JEE MAIN 2023]
  • A

    $15$

  • B

    $14$

  • C

    $13$

  • D

    $12$

Similar Questions

माना $A =\{ n \in N :$ म.स.प. $( n , 45)=1\}$ तथा माना $B =\{2 k : k \in\{1,2, \ldots, 100\}\}$ है। तब $A \cap B$ के सभी अवयवों का योगफल है

  • [JEE MAIN 2022]

समुच्चय $\{1,2,3, \ldots, 100\}$ के $A_1, A_2, \ldots, A_m$ ऐसे अरिक्त $(non\,empty)$ उपसमुच्चय है कि

$(1)$ संख्याएँ $\left|A_1\right|,\left|A_2\right|, \ldots,\left|A_m\right|$ अभिन्न है

$(2)$ $A_1, A_2, \ldots, A_m$ युगल रूप से $(pair-wise)$ असंयुक्त $(disjoint)$ है

(जहाँ $|A|$ समुच्चय $A$ में अवयवों $(elements)$ की संख्या है) तब $m$ का महत्तम संभव मान होगा

  • [KVPY 2016]

समुच्चय $\left\{n \in \mathbb{Z}:\left|n^2-10 n+19\right|<6\right\}$ में अवयवों की संख्या है____________.

  • [JEE MAIN 2023]

माना $A =\{ x \in R :| x +1| < 2\}$ तथा $B =\{ x \in R :| x -1| \geq 2\}$ है। तब निम्न में से कौनसा कथन सत्य नहीं है ?

  • [JEE MAIN 2022]

मान लें कि $a>0$ तथा $a \neq 1$ है। तब सभी धनात्मक वास्तविक संख्याओं $b$ का समुच्चय $S$, जो $\left(1+a^2\right)\left(1+b^2\right)=4 a b$ को संतुष्ट करता है, निम्न होगा:

  • [KVPY 2019]