माना $\left(2 x ^{2}+3 x +4\right)^{10}=\sum_{ r =0}^{20} a _{ r } x ^{ r }$ है। तब $\frac{ a _{7}}{ a _{13}}$ का मान होगा
$4$
$32$
$16$
$8$
यदि $b , a$ से बहुत छोटा है, जिनके लिए निम्न सर्वसमिका
$\frac{1}{a-b}+\frac{1}{a-2 b}+\frac{1}{a-3 b}+\ldots .+\frac{1}{a-n b}=\alpha n+\beta n^{2}+\gamma n^{3}$ में, $\frac{ b }{ a }$ की क्यूब और ऊँची घातों की उपेक्षा की जा सकती है, तो $\gamma$ बराबर है
श्रेणी $\frac{{{C_0}}}{2} - \frac{{{C_1}}}{3} + \frac{{{C_2}}}{4} - \frac{{{C_3}}}{5} + $.....के $(n + 1)$ पदों का योग है
$\sum_{ k =0}^{20}\left({ }^{20} C _{ k }\right)^{2}$ बराबर है
यदि ${ }^{20} C _{1}+\left(2^{2}\right){ }^{20} C _{2}+\left(3^{2}\right){ }^{20} C _{3}+\ldots \ldots+$ $\left(20^{2}\right)^{20} C _{20}= A \left(2^{\beta}\right)$, तो क्रमित युग्म $( A , \beta)$ बराबर है
यदि $\frac{{ }^{11} \mathrm{C}_1}{2}+\frac{{ }^{11} \mathrm{C}_2}{3}+\ldots . .+\frac{{ }^{11} \mathrm{C}_9}{10}=\frac{\mathrm{n}}{\mathrm{m}}$ है तथा $\operatorname{gcd}(\mathrm{n}, \mathrm{m})=1$ है, तो $\mathrm{n}+\mathrm{m}$ बराबर है ............