- Home
- Standard 11
- Mathematics
જો $a, b, c, d$ અને $p$ એ શૂન્યેતર ભિન્ન વાસ્તવિક સંખ્યા એવી મળે કે જેથી $\left(a^{2}+b^{2}+c^{2}\right) p^{2}-2(a b+b c+ cd ) p +\left( b ^{2}+ c ^{2}+ d ^{2}\right)=0$ થાય તો
$a,c,p$ એ સમગુણોત્તર શ્રેણીમાં છે
$a,c,p$ એ સમાંતર શ્રેણીમાં છે
$a,b,c,d$ એ સમગુણોત્તર શ્રેણીમાં છે
$a,b,c,d$ એ સમાંતર શ્રેણીમાં છે
Solution
$\left(a^{2}+b^{2}+c^{2}\right) p^{2}+2(a b+b c+c d) p+b^{2}+c^{2}+d^{2}$
$=0$
$\Rightarrow\left(a^{2} p^{2}+2 a b p+b^{2}\right)+\left(b^{2} p^{2}+2 b c p+c^{2}\right)+$
$\left(c^{2} p^{2}+2 c d p+d^{2}\right)=0$
$\Rightarrow(a b+b)^{2}+(b p+c)^{2}+(c p+d)^{2}=0$
This is possible only when $a p+b=0$ and $b p+c=0$ and $c p+d=0$
$p =-\frac{ b }{ a }=-\frac{ c }{ b }=-\frac{ d }{ c }$
or $\frac{ b }{ a }=\frac{ c }{ b }=\frac{ d }{ c }$
$\therefore a , b , c , d$ are in $G . P$