નીચે આપેલ આવૃત્તિ-વિતરણ માટે મધ્યક, વિચરણ અને પ્રમાણિત વિચલન શોધો.
વર્ગ | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ | $80-90$ | $90-100$ |
આવૃત્તિ |
$3$ | $7$ | $12$ | $15$ | $8$ | $3$ | $2$ |
Let the assumed mean $A =65 .$ Here $h=10$
We obtain the following Table from the given data :
Class |
Frequency ${f_i}$ |
Mid-point ${x_i}$ |
${y_i} = \frac{{{x_i} - 65}}{{10}}$ | ${y_i}^2$ | ${f_i}{y_i}$ | ${f_i}{y_i}^2$ |
$30-40$ | $3$ | $35$ | $-3$ | $9$ | $-9$ | $27$ |
$40-50$ | $7$ | $45$ | $-2$ | $4$ | $-14$ | $28$ |
$50-60$ | $12$ | $55$ | $-1$ | $1$ | $-12$ | $12$ |
$60-70$ | $15$ | $65$ | $0$ | $0$ | $0$ | $0$ |
$70-80$ | $8$ | $75$ | $1$ | $1$ | $8$ | $8$ |
$80-90$ | $3$ | $85$ | $2$ | $4$ | $6$ | $12$ |
$90-100$ | $2$ | $95$ | $3$ | $9$ | $6$ | $18$ |
$N=50$ | $-15$ | $105$ |
Therefore $\bar x = A + \frac{{\sum {{f_i}{y_i}} }}{{50}} \times h = 65 - \frac{{15}}{{50}} \times 10 = 62$
Variance ${\sigma ^2} = \frac{{{h^2}}}{{{N^2}}}\left[ {N{{\sum {{f_i}{y_i}} }^2} - {{\left( {\sum {{f_i}{y_i}} } \right)}^2}} \right]$
$=\frac{(10)^{2}}{(50)^{2}}\left[50 \times 105-(-15)^{2}\right]$
$=\frac{1}{25}[5250-225]=201$
and standard deviation $(\sigma)=\sqrt{201}=14.18$
આવૃતી વિતરણ
$\mathrm{x}$ | $\mathrm{x}_{1}=2$ | $\mathrm{x}_{2}=6$ | $\mathrm{x}_{3}=8$ | $\mathrm{x}_{4}=9$ |
$\mathrm{f}$ | $4$ | $4$ | $\alpha$ | $\beta$ |
માં જો મધ્યક અને વિચરણ અનુક્રમે $6$ અને $6.8$ છે. જો $x_{3}$ એ $8$ માંથી $7$ કરવામાં આવે છે તો નવી માહિતીનો મધ્યક મેળવો.
$x_1, x_2 …… x_{101}$ વિતરણના $x_1 < x_2 < x_3 < …… < x_{100} < x_{101}$ મૂલ્યો માટે સંખ્યા $k$ ની સાપેક્ષે આ વિતરણનું સરેરાશ વિચલન ઓછામાં ઓછું હશે. જ્યારે $k$ બરાબર નીચેના પૈકી કયું હશે ?
સંખ્યાઓ $3,7, x$ અને $y(x>y)$ નો મધ્યક અને વિચરણ અનુક્રમે $5$ અને $10$ છે. તો ચાર સંખ્યાઓ $3+2 \mathrm{x}, 7+2 \mathrm{y}, \mathrm{x}+\mathrm{y}$ અને $x-y$ નો મધ્યક મેળવો.
સાત અવલોકનોનો મધ્યક અને વિચરણ અનુક્રમે $8$ અને $16$ છે જો $5$ અવલોકનો $2, 4, 10, 12, 14,$ હોય તો બાકી રહેલા બે અવલોકનોનો ગુણાકાર .......... થાય
$15$ અવલોકનોનાં મધ્યક અને પ્રમાણત વિચલન અનુક્રમે $8$ અને $3$ માલુમ પડયા છે. ફરી ચકાસણી કરતાં એવું માલુમ પડયુ અવલોકન $20$ ને ભૂલથી $5$ વાંચવામાં આવ્યું હતું. તો સાચા વિચરણનું મૂલ્ય..............છે