माना स्वतंत्र घटनाओं $A$ तथा $B$ के लिए $P ( A )= p$ तथा $P ( B )=2 p$ हैं। तो $p$ का अधिकतम मान, जिसके लिए $P ( A$ तथा $B$ में से ठीक एक घटित होती है $)=\frac{5}{9}$ है
$\frac{1}{3}$
$\frac{2}{9}$
$\frac{4}{9}$
$\frac{5}{12}$
माना कि $E$ व $F$ दो स्वतंत्र घटनायें हैं $E$ व $F$ दोनों के घटने की प्रायिकता $\frac{1}{{12}}$ है तथा "न तो $E$ और न $F$" से घटने की प्रायिकता $\frac{1}{2}$ है, तो
$52$ पत्तों की एक गड्डी में से यादृच्छया बिना प्रतिस्थापित किए गए दो पत्ते निकाले गए। दोनों पत्तों के काले रंग का होने की प्रायिकता ज्ञात कीजिए।
यदृच्छया चुने गये किसी लीप वर्ष में $53$ रविवार या $53$ सोमवार होने की प्रायिकता है
$A$ और $B$ स्वतंत्र घटनाएँ दी गई हैं जहाँ $P ( A )=0.3, P ( B )=0.6$ तो $P ( A$ और $B$ -नहीं $)$ का मान ज्ञात कीजिए।
पूर्णांकों $1,2,3, \ldots, 50$ से एक पूर्णांक यादृच्छया चुना जाता है। चुने गए पूर्णांक के $4,6$ तथा $7$ में से कम से कम एक के गुणज होने की प्रायिकता है