- Home
- Standard 11
- Mathematics
Let $a_{1}, a_{2}, \ldots \ldots, a_{21}$ be an $A.P.$ such that $\sum_{n=1}^{20} \frac{1}{a_{n} a_{n+1}}=\frac{4}{9}$. If the sum of this AP is $189,$ then $a_{6} \mathrm{a}_{16}$ is equal to :
$57$
$72$
$48$
$36$
Solution
$\sum_{n=1}^{20} \frac{1}{a_{n} a_{n+1}}=\sum_{n=1}^{20} \frac{1}{a_{n}\left(a_{n}+d\right)}$
$=\frac{1}{d} \sum_{n=1}^{20}\left(\frac{1}{a_{n}}-\frac{1}{a_{n}+d}\right)$
$\Rightarrow \frac{1}{d}\left(\frac{1}{a_{1}}-\frac{1}{a_{21}}\right)=\frac{4}{9} \text { (Given) }$
$\Rightarrow \frac{1}{\mathrm{~d}}\left(\frac{\mathrm{a}_{21}-\mathrm{a}_{1}}{\mathrm{a}_{1} \mathrm{a}_{21}}\right)=\frac{4}{9}$
$\Rightarrow \frac{1}{\mathrm{~d}}\left(\frac{\mathrm{a}_{1}+20 \mathrm{~d}-\mathrm{a}_{1}}{\mathrm{a}_{1} \mathrm{a}_{2}}\right)=\frac{4}{9}$$\Rightarrow \mathrm{a}_{1} \mathrm{a}_{2}=45 \ldots (1)$
Now sum of first $21$ terms $=\frac{21}{2}\left(2 \mathrm{a}_{1}+20 \mathrm{~d}\right)=189$
$\Rightarrow a_{1}+10 d=9 \ldots (2)$
For equation $(1) \,\&\,(2)$ we get
$a_{1}=3\,\&\, d=\frac{3}{5}$
OR
$a_{1}=15\, \&\, d=-\frac{3}{5}$
$\mathrm{So}, a_{6} \cdot \mathrm{a}_{16}=\left(\mathrm{a}_{1}+5 \mathrm{~d}\right)\left(\mathrm{a}_{1}+15 \mathrm{~d}\right)$
$\Rightarrow \mathrm{a}_{6} \mathrm{a}_{16}=72$