અહી $a_{1}, a_{2}, \ldots \ldots, a_{21}$ એ સમાંતર શ્રેણીમાં છે કે જેથી $\sum_{n=1}^{20} \frac{1}{a_{n} a_{n+1}}=\frac{4}{9}$ છે. જો શ્રેણીનાં પદોનો સરવાળો $189,$ હોય તો $a_{6} \mathrm{a}_{16}$ ની કિમંત મેળવો.
$57$
$72$
$48$
$36$
જો કોઈ સમાંતર શ્રેણી માટે $p^{th}$ અને $q^{th}$ પદ માટેનો સમાંતર મધ્યક તે જ શ્રેણીના $r^{th}$ અને $s^{th}$ ના સમાંતર મધ્યક જેટલો થાય તો $p + q$ ની કિમત મેળવો.
એક સમાંતર શ્રેણીનાં પ્રથમ $m$ અને $n$ પદોના સરવાળાના ગુણોત્તર $m^{2}: n^{2}$ છે. સાબિત કરો કે $m$ માં તથા $n$ માં પદોનો ગુણોત્તર $(2 m-1):(2 n-1)$ થાય.
જો ${a_1},\;{a_2},\;{a_3}.......{a_n}$ એ સંમાતર શ્રેણીમંા હોય કે જયાંં ${a_i} > 0$,તો $\frac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \frac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + $ $........ + \frac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} = $ ___.
એક વેપારી ગણતરી કરે છે કે એક મશીન તેને $Rs$ $15,625$ માં મળે છે અને દર વર્ષે તેનો ઘસારો $20\ %$ છે, તો પાંચ વર્ષ પછી આ મશીનની અંદાજિત કિંમત કેટલી હશે ?
$a$ અને $b$ બે સંખ્યાઓ છે. $A$ સમાંતર મધ્યક અને $S$ એ $a $ અને $b$ વચ્ચેના $n$ સમાંતર મધ્યકોનો સરવાળો દર્શાવે તો $S/A$ કોના ઉપર આધાર રાખે છે ?