सिद्ध कीजिए कि $f(x)=2 x$ द्वारा प्रदत्त फलन $f: R \rightarrow R$, एकैकी तथा आच्छादक है।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$f$ is one-one, as $f\left(x_{1}\right)$ $=f\left(x_{2}\right) \Rightarrow 2 x_{1}$ $=2 x_{2} \Rightarrow x_{1}=x_{2} .$ Also, given any real number $y$ in $R$ there exists $\frac{y}{2}$ in $R$ such that $f\left(\frac{y}{2}\right)$ $=2 \cdot\left(\frac{y}{2}\right)=y .$ Hence, $f$ is onto.

864-s38

Similar Questions

यदि फलन $f(x)=\log _e\left(4 x^2+11 x+6\right)+$ $\sin ^{-1}(4 x+3)+\cos ^{-1}\left(\frac{10 x+6}{3}\right)$ का प्रांत $(\alpha, \beta]$ है, तो $36|\alpha+\beta|$ बराबर है :

  • [JEE MAIN 2023]

यदि $f\left( x \right) + 2f\left( {\frac{1}{x}} \right) = 3x,x \ne 0$ है, तथा $S = \left\{ {x \in R:f\left( x \right) = f\left( { - x} \right)} \right\}$ है, तो $S :$

  • [JEE MAIN 2016]

माना फलन $\mathrm{f}(\mathrm{x})=\frac{1}{\sqrt{\lceil\mathrm{x}\rceil-\mathrm{x}}}$ जहाँ $\lceil\mathrm{x}\rceil$ न्यूनतम पूर्णांक $\geq x$ है, के प्रांत तथा परिसर क्रमशः समुच्चय $A$ तथा $B$ है। तो कथनों

$(\mathrm{S} 1): \mathrm{A} \cap \mathrm{B}=(1, \infty)-\mathrm{N}$ तथा

$(\mathrm{S} 2): \mathrm{A} \cup \mathrm{B}=(1, \infty)$ में

  • [JEE MAIN 2023]

यदि ${e^x} = y + \sqrt {1 + {y^2}} $, तब $y =$

माना एक अवकलनीय फलन $\mathrm{f}: \mathrm{R} \rightarrow(0, \infty)$ के लिए $5 f(x+y)=f(x) \cdot f(y), \forall x, y \in R$ है। यदि $\mathrm{f}(3)=320$, तो $\sum_{\mathrm{n}=0}^5 \mathrm{f}(\mathrm{n})$ बराबर है :

  • [JEE MAIN 2023]