यदि $f(x) = (1 + {b^2}){x^2} + 2bx + 1$ तथा $m(b)$ दिये हुए $b$ के लिए, $f(x)$ का न्यूनतम मान है, तब $m(b)$ का परिसर (रेंज) है
$[0, 1]$
$\left( {0,\;\frac{1}{2}} \right]$
$\left[ {\frac{1}{2},\;1} \right]$
$(0,\;1]$
माना $f(n)=\left[\frac{1}{3}+\frac{3 n}{100}\right] n$, जहाँ $[n]$ एक महत्तम पूणांक, जो $n$ से छोटा अथवा बराबर है, तो $\sum_{ n =1}^{56} f(u)$ बराबर है
माना $f ( x )=\frac{ x -1}{ x +1}, x \in R -\{0,-1,1)$ है। यदि $f ^{ n +1}( x )= f \left( f ^{ n }( x )\right)$ है, तो $\forall n \in N$, है, तो $f ^6(6)+ f ^7(7)$ बराबर है
दो सम्बन्ध $R_{1}$ तथा $R_{2}$ नीचे दिए गए हैं:
$R _{1}=\left\{( a , b ) \in R ^{2}: a ^{2}+ b ^{2} \in Q \right\}$ तथा $R _{2}=\left\{( a , b ) \in R ^{2}: a ^{2}+ b ^{2} \notin Q \right\}$ जहाँ सभी परिमेय संख्याओं का समुच्चय है, तो:
फलन $f(x)=\frac{\cos ^{-1}\left(\frac{x^2-5 x+6}{x^2-9}\right)}{\log _e\left(x^2-3 x+2\right)}$ का प्रांत है
फलन $y = f(x)$ का ग्राफ रेखा $x = 2$ के परित: सममित है, तब