ધારો કે $f$ અને $g$ એ $(-2,2)$ પરનાં એવા દ્વિ વિકલનીય ચુગ્મ વિધેયો છે કે જેથી $f\left(\frac{1}{4}\right)=0, f\left(\frac{1}{2}\right)=0, f(1)=1$ અને $g\left(\frac{3}{4}\right)=0, g(1)=2 .$ ,તો $(-2,2)$ માં, $f(x) g^{\prime \prime}(x)+f^{\prime}(x) g^{\prime}(x)=0$ ના ઉકેલોની ન્યૂનતમ સંખ્યા $\dots\dots$છે.
$0$
$2$
$4$
$6$
ચકાસો કે આપેલ વિધેયમાં રોલનું પ્રમેય લગાડી શકાય કે નહિ : $f(x)=[x],$ $x \in[-2,2]$
વિધેય $f(x) = |x|$ એ અંતરાલ $[-1, 1]$ માં રોલ ના પ્રમેયનું પાલન કરતું નથી કારણ કે . . . .
જો વિધેય $f(x) = x(x + 3) e^{-x/2} $ એ અંતરાલ $[-3, 0]$ માં રોલના પ્રમેયનું પાલન કરે છે તો $C$ મેળવો.
જો $a + b + c = 0 $ હોય, તો $(0, 1) $ અંતરાલમાં સમીકરણ $3ax^2 + 2bx + c = 0 $ કેટલા બીજ ધરાવે ?
આપલે પૈકી ક્યૂ વિધેય રોલના પ્રમેયનું પાલન કરે છે ?