ધારો કે $f$ અને $g$ એ $(-2,2)$ પરનાં એવા દ્વિ વિકલનીય ચુગ્મ વિધેયો છે કે જેથી $f\left(\frac{1}{4}\right)=0, f\left(\frac{1}{2}\right)=0, f(1)=1$ અને $g\left(\frac{3}{4}\right)=0, g(1)=2 .$ ,તો $(-2,2)$ માં, $f(x) g^{\prime \prime}(x)+f^{\prime}(x) g^{\prime}(x)=0$ ના ઉકેલોની ન્યૂનતમ સંખ્યા $\dots\dots$છે.
$0$
$2$
$4$
$6$
If $f(x)$ એ $[1,\,2]$ માટે રોલના પ્રમેયનું પાલન કરે છે અને $f(x)$ એ $[1,\,2]$ માં સતત છે તો $\int_1^2 {f'(x)dx} = . . .$
જો $c = \frac {1}{2}$ અને $f(x) = 2x -x^2$ એ અંતરાલ $x$ પર મધ્યકમાન પ્રમેય પાલન કરે છે તો $x$ મેળવો.
જો $ [1, 3] $ પર વ્યાખ્યાયિત વિધેય $f(x) = x^3 - 6x^2 + ax + b$ એ $c\,\, = \,\,\frac{{2\sqrt 3 + 1}}{{\sqrt 3 }}$ માટે રોલના પ્રમેયનું પાલન કરે, તો.........
જો અંતરાલ $[3,4]$ માં બિંદુ $c$ આગળ વિધેય $f(\mathrm{x})=\log _{\mathrm{e}}\left(\frac{\mathrm{x}^{2}+\alpha}{7 \mathrm{x}}\right)$ કે જ્યાં $\alpha \in \mathrm{R},$ એ રોલના પ્રમેયનું પાલન કરતું હોય તો $f^{\prime \prime}(\mathrm{c})$ મેળવો.
વિધેય $f\left( x \right) = \log x$ નો અંતરાલ $[1,3]$ માટે મધ્યકમાન પ્રમેય નો ઉપયોગ કરી $C$ ની કિંમત મેળવો.