5. Continuity and Differentiation
hard

माना अन्तराल $(-2,2)$ में $f$ तथा $g$ दो बार अवकलनीय समफलन इस प्रकार है कि $f\left(\frac{1}{4}\right)=0, f\left(\frac{1}{2}\right)=0, f(1)=1$ तथा $g\left(\frac{3}{4}\right)=0, g(1)=2$ है। तब अन्तराल $(-2,2)$ में $f$ (x) $g ^{\prime \prime}( x )+ f ^{\prime}( x ) g ^{\prime}( x )=0$ के हलों की न्यूनतम संख्या है।

A

$0$

B

$2$

C

$4$

D

$6$

(JEE MAIN-2022)

Solution

Let $h(x)=f(x) g^{\prime}(x) \rightarrow 5$ roots

$\because f ( x )$ is even $\Rightarrow$

$f \left(\frac{1}{4}\right)= f \left(\frac{1}{2}\right)= f \left(-\frac{1}{2}\right)= f \left(\frac{1}{4}\right)=0$

$g ( x )$ is even $\Rightarrow g \left(\frac{3}{4}\right)= g \left(-\frac{3}{4}\right)=0$

$g ^{\prime}( x )=0$ has minimum one root

$h^{\prime}( x )$ has at last $4$ roots

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.