ધારો કે $f ( x )$ એ દ્રીઘાત બહુપદી છે અને મોટી ઘાતક નો સહગુણક $1$ છે કે જેથી $f(0)=p, p \neq 0$ અને $f(1)=\frac{1}{3}$ થાય. જો સમીકરણ $f(x)=0$ અને $fofofof (x)=0$ ને સામાન્ય બીજ હોય તો $f(-3)$ ની કિમંત $........$ થાય.
$25$
$24$
$23$
$22$
$f(x) = [\sin x] \cos \left( {\frac{\pi }{{[x - 1]}}} \right)$ નો પ્રદેશગણ ....... થાય (જ્યા $[.]$ = $G.I.F.$)
જો $f(x)$ માટે નો સબંધ $f\left( {\frac{{5x - 3y}}{2}} \right) = \frac{{5f(x) - 3f(y)}}{2}\forall x,y\, \in \,R$ અને $f(0)=1, f'(0)=2$ હોય તો $sin(f(x))$ નો આવર્તમાન મેળવો.
જો $S=\{1,2,3,4,5,6,7\} $ આપેલ છે. વિધેય $f:S \rightarrow S$ કેટલા શક્ય બને કે જેથી દરેક $m, n \in S$ માટે $f(m \cdot n)=f(m) \cdot f(n)$ અને $m . n \in S$ થાય.
વિધેય $f:\left[ { - 1,1} \right] \to R$ જ્યા $f(x) = {\alpha _1}{\sin ^{ - 1}}x + {\alpha _3}\left( {{{\sin }^{ - 1}}{x^3}} \right) + ..... + {\alpha _{(2n + 1)}}{({\sin ^{ - 1}}x)^{(2n + 1)}} - {\cot ^{ - 1}}x$ ધ્યાનમા લ્યો. જ્યા $\alpha _i\ 's$ એ ધન અચળ હોય અને $n \in N < 100$ હોય તો $f(x)$ એ .................. વિધેય છે.
$x$ ની બધી કિમતો ધરાવતો ગણ મેળવો.
$\frac{{{x^4} - 4{x^3} + 3{x^2}}}{{({x^2} - 4)({x^2} - 7x + 10)}} \ge 0$