1.Relation and Function
normal

माना $f(x)$ एक द्विघाती बहुपद है जिसका मुख्य-गुणांक 1 है तथा $f (0)= p , p \neq 0$ और $f (1)=\frac{1}{3}$ हैं। यदि समीकरणों $f ( x )=0$ तथा $fofofof (x)=0$ का एक उभयनिष्ठ वास्तविक मूल है, तो $f(-3)$ बराबर है

A

$25$

B

$24$

C

$23$

D

$22$

(JEE MAIN-2022)

Solution

Let $f(x)=(x-\alpha)(x-\beta)$

It is given that $f(0)=p \Rightarrow \alpha \beta=p$

and $f(1)=\frac{1}{3} \Rightarrow(1-\alpha)(1-\beta)=\frac{1}{3}$

Now, let us assume that $\alpha$ is the common root of $f(x)=0$ and $f \circ f \circ f o f(x)=0$

$fofofof(x)=0$

$fofof(0) =0$

$f o f(p)=0$

So, $f(p)$ is either $\alpha$ or $\beta$.

$(p-\alpha)(p-\beta)=\alpha$

$(\alpha \beta-\alpha)(\alpha \beta-\beta)=\alpha \Rightarrow(\beta-1)(\alpha-1) \beta=1$

$(\because \alpha \neq 0)$

So, $\beta=3$

$(1-\alpha)(1-3)=\frac{1}{3}$

$\alpha=\frac{7}{6}$

$f(x)=\left(x-\frac{7}{6}\right)(x-3)$

$f(-3)=\left(-3-\frac{7}{6}\right)(3-3)=25$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.