Let $S_{n}$ be the sum of the first $n$ terms of an arithmetic progression. If $S_{3 n}=3 S_{2 n}$, then the value of $\frac{S_{4 n}}{S_{2 n}}$ is:

  • [JEE MAIN 2021]
  • A

    $4$

  • B

    $6$

  • C

    $8$

  • D

    $2$

Similar Questions

If all interior angle of quadrilateral are in $AP$ . If common difference is $10^o$ , then find smallest angle ?.....$^o$

If the roots of the equation $x^3 - 9x^2 + \alpha x - 15 = 0 $ are in $A.P.$, then $\alpha$  is 

Let $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \ldots$ be an $A.P.$ If $\frac{a_{1}+a_{2}+\ldots+a_{10}}{a_{1}+a_{2}+\ldots+a_{p}}=\frac{100}{p^{2}}, p \neq 10$, then $\frac{a_{11}}{a_{10}}$ is equal to :

  • [JEE MAIN 2021]

Write the first five terms of the sequences whose $n^{t h}$ term is $a_{n}=n \frac{n^{2}+5}{4}$

If $b + c,$ $c + a,$ $a + b$ are in $H.P.$, then $\frac{a}{{b + c}},\frac{b}{{c + a}},\frac{c}{{a + b}}$ are in