Let $S_{n}$ be the sum of the first $n$ terms of an arithmetic progression. If $S_{3 n}=3 S_{2 n}$, then the value of $\frac{S_{4 n}}{S_{2 n}}$ is:
$4$
$6$
$8$
$2$
Insert five numbers between $8$ and $26$ such that resulting sequence is an $A.P.$
The number of terms common to the two A.P.'s $3,7,11, \ldots ., 407$ and $2,9,16, \ldots . .709$ is
The sums of $n$ terms of two arithmetic progressions are in the ratio $5 n+4: 9 n+6 .$ Find the ratio of their $18^{\text {th }}$ terms.
Let $l_1, l_2, \ldots, l_{100}$ be consecutive terms of an arithmetic progression with common difference $d_1$, and let $w_1, w_2, \ldots, w_{100}$ be consecutive terms of another arithmetic progression with common difference $d_2$, where $d_1 d_2=10$. For each $i=1,2, \ldots, 100$, let $R_i$ be a rectangle with length $l_i$, width $w_i$ and area $A_i$. If $A_{51}-A_{50}=1000$, then the value of $A_{100}-A_{90}$ is. . . . .
Write the first five terms of the sequences whose $n^{t h}$ term is $a_{n}=\frac{2 n-3}{6}$