અહી $\alpha, \beta(\alpha>\beta)$ એ દ્રીઘાત સમીકરણ $x ^{2}- x -4=0$ ના બીજ છે. જો $P _{ a }=\alpha^{ n }-\beta^{ n }, n \in N$ તો $\frac{ P _{15} P _{16}- P _{14} P _{16}- P _{15}^{2}+ P _{14} P _{15}}{ P _{13} P _{14}}$ ની કિમંત $......$ થાય.
$15$
$14$
$13$
$16$
સમીકરણ $\sqrt {3 {x^2} + x + 5} = x - 3$ માટે $x$ ના વાસ્તવિક ઉકેલોનો સંખ્યા ....... છે ?
સમીકરણ $x^2 + 2 | x | -15\geq 0$ નો ઉકેલ કેવી રીતે આપી શકાય ?
ધારો કે $\alpha_1, \alpha_2, \ldots, \alpha_7$ એ સમીકરણ $x^7+3 x^5-13 x^3-15 x=0$ નાં બીજ છે અને $\left|a_1\right| \geq\left|\alpha_2\right| \geq \ldots \geq\left|\alpha_7\right|$ તો $\alpha_1 \alpha_2-\alpha_3 \alpha_4+\alpha_5 \alpha_6=......$
સમીકરણ $|x{|^2}$-$3|x| + 2 = 0$ ના વાસ્તવિક બીજની સંખ્યા મેળવો.
$\mathrm{k}(\mathrm{k} \neq 0 )$ ની બધીજ પૂર્ણાંક સંખ્યાનો સરવાળો મેળવો કે જેથી $x$ નું સમીકરણ $\frac{2}{x-1}-\frac{1}{x-2}=\frac{2}{k}$ ને એકપણ વાસ્તવિક બીજ ન હોય .