मान लें $a=\sum \limits_{n=101}^{200} 2^n \sum \limits_{k=101}^n \frac{1}{k !}$ और $b=\sum \limits_{n=101}^{200} \frac{2^{201}-2^n}{n !}$ तब $\frac{a}{b}$ है:
अनंत कई ऐसे त्रिक $(triples)$ $a, b, c$ हैं.
सटीक एक ही ऐसा त्रिक $(triples)$ $a, b, c$ हैं.
सटीक ऐसे दो त्रिक $(triples)$ $a, b, c$ हैं.
सटीक ऐसे तीन त्रिक $(triples)$ $a, b, c$ हैं.
$|x - 2{|^2} + |x - 2| - 6 = 0$के मूल होंगे
यदि ${x^3} + 8 = 0$ के मूल $\alpha , \beta$ तथा $\gamma$ हैं, तो वह समीकरण जिसके मूल ${\alpha ^2},{\beta ^2}$ तथा ${\gamma ^2}$ है, होगा
यदि $x, y, z$ अशून्यक $(non-zero)$ वास्तविक संख्याएँ इस प्रकार हैं कि $\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=7$ तथा $\frac{y}{x}+\frac{z}{y}+\frac{x}{z}=9$, तब $\frac{x^3}{y^3}+\frac{y^3}{z^3}+\frac{z^3}{x^3}-3$ का मान क्या होगा ?
समीकरण $\log _{(3 x-1)}(x-2)=\log _{\left(9 x^2-6 x+1\right)}\left(2 x^2-10 x-2\right)$ के हल $x$ का मान निम्न है :
समीकरण $x|x|-5|x+2|+6=0$ के वास्तविक मूलों की संख्या है :