मान लें $a=\sum \limits_{n=101}^{200} 2^n \sum \limits_{k=101}^n \frac{1}{k !}$ और $b=\sum \limits_{n=101}^{200} \frac{2^{201}-2^n}{n !}$ तब $\frac{a}{b}$ है:
अनंत कई ऐसे त्रिक $(triples)$ $a, b, c$ हैं.
सटीक एक ही ऐसा त्रिक $(triples)$ $a, b, c$ हैं.
सटीक ऐसे दो त्रिक $(triples)$ $a, b, c$ हैं.
सटीक ऐसे तीन त्रिक $(triples)$ $a, b, c$ हैं.
समीकरण $pq{x^2} - {(p + q)^2}x + {(p + q)^2} = 0$ का हल समुच्चय है
यदि $72^x \cdot 48^y=6^{x y}$ हो, जहाँ $x$ तथा $y$ अशून्य परिमेय संख्याएँ हैं, तब $x+y$ का मान होगा
यदि $\alpha, \beta $ $\gamma$ समीकरण $2{x^3} - 3{x^2} + 6x + 1 = 0$ के मूल हों, तो ${\alpha ^2} + {\beta ^2} + {\gamma ^2}$ का मान है
यदि द्विघाती समीकरण, $x^{2}+x \sin \theta-2 \sin \theta=0, \theta \in\left(0, \frac{\pi}{2}\right) \text {, }$ के मूल $\alpha$ तथा $\beta$ हैं, तो $\frac{\alpha^{12}+\beta^{12}}{\left(\alpha^{-12}+\beta^{-12}\right)(\alpha-\beta)^{24}}$ बराबर हैं
यदि $a < 0$ तब असमिका $a{x^2} - 2x + 4 > 0$ के मूल निम्न द्वारा प्रदर्शित होंगे