Gujarati
Trigonometrical Equations
hard

यदि $X=\{x \in R : \cos (\sin x)=\sin (\cos x)\}$, तो $X$ में कुल अवयवों की संख्या

A

$0$

B

$2$

C

$4$

D

परिमित नहीं है.

(KVPY-2016)

Solution

(a)

We have,

$X=\{x \in R: \cos (\sin x)=\sin (\cos x)\}$

$\cos (\sin x)=\sin (\cos x)$

$\quad \sin \left(\frac{\pi}{2} \pm \sin x\right)=\sin (\cos x)$

$\Rightarrow \quad \cos x=\frac{\pi}{2} \pm \sin x$

$\Rightarrow \cos x=n \pi+(-1)^n\left(\frac{\pi}{2}+\sin x\right), n \in I$

$\Rightarrow \cos x \pm \sin x=n \pi+(-1)^n \frac{\pi}{2}, n \in I$

As $L H S \in[-\sqrt{2}, \sqrt{2}]$ and it does not satisfy the RHS.

$\therefore$ No solution exists.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.