$\theta $ का वे मान, जो ${0^o}$ तथा ${360^o}$ के बीच में है तथा समीकरण $\tan \theta + \frac{1}{{\sqrt 3 }} = 0$ को सन्तुष्ट करते हैं, हैं
$\theta = {150^o}$और ${300^o}$
$\theta = {120^o}$और ${300^o}$
$\theta = {60^o}$और ${240^o}$
$\theta = {150^o}$ और ${330^o}$
$\theta $का वह मान, जो कि $0$ एवं $\frac{\pi }{2}$ के मध्य हो तथा समीकरण
$\left| {\,\begin{array}{*{20}{c}}{1 + {{\sin }^2}\theta }&{{{\cos }^2}\theta }&{4\sin 4\theta }\\{{{\sin }^2}\theta }&{1 + {{\cos }^2}\theta }&{4\sin 4\theta }\\{{{\sin }^2}\theta }&{{{\cos }^2}\theta }&{1 + 4\sin 4\theta }\end{array}\,} \right| = 0$
को संतुष्ट करता हो, है
यदि $|k|\, = 5$ तथा ${0^o} \le \theta \le {360^o}$, तब 3$\cos \theta + 4\sin \theta = k$ के विभिन्न हलों की संख्या होंगी
यदि $\cos 3x + \sin \left( {2x - \frac{{7\pi }}{6}} \right) = - 2$, तब $x = $ (जहाँ $k \in Z$)
हल कीजिए $2 \cos ^{2} x+3 \sin x=0$
समीकरण $2{\sin ^2}\theta + \sqrt 3 \cos \theta + 1 = 0$ को सन्तुष्ट करने वाला न्यूनतम धनात्मक कोण है