मान लें $f(x)$ एक चर बहुपद इस प्रकार है कि $f\left(\frac{1}{2}\right)=100$ तथा $f(x) \leq 100$ प्रत्येक वास्तविक $x$ के लिए है। निम्नलिखित में से कौन सा कथन आवश्यक रूप से सत्य नहीं है?
$f(x)$ में उच्चतम कोटि के पद का गुणांक ॠणात्मक होगा
$f(x)$ के कम से कम दो शून्यक वास्तविक हैं
यदि $x \neq 1 / 2$ है तब $f(x) < 100$
$f(x)$ का कम से कम एक गुणांक $50$ से अधिक होगा
माना $f, g: N -\{1\} \rightarrow N , f(a)=\alpha$, जहाँ उन अभाज्य संख्याओं $p$, जिनके लिए $p ^\alpha$, $a$ को विभाजित करता है, की घातों में $\alpha$ अधिकतम है तथा $g(a)=a+1$, सभी $a \in N -\{1\}$ के लिए, द्वारा परिभाषित हैं। तब फलन $f+ g$
यदि $f\left( x \right) + 2f\left( {\frac{1}{x}} \right) = 3x,x \ne 0$ है, तथा $S = \left\{ {x \in R:f\left( x \right) = f\left( { - x} \right)} \right\}$ है, तो $S :$
सिद्ध कीजिए कि $f(x)=x^{2}$ द्वारा परिभाषित फलन $f: R \rightarrow R$ न तो एकैकी है और न आच्छादक है।
सिद्ध कीजिए कि $f: R \rightarrow\{x \in R :-1 < x < 1\}$ जहाँ $f(x)=\frac{x}{1+|x|}, x \in R$ द्वारा
परिभाषित फलन एकैकी तथा आच्छादक है ।
माना $\mathrm{S}=\{1,2,3,4,5,6\}$ है तो ऐसे ऐकेकी फलनों $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{P}(\mathrm{S})$, जहाँ $\mathrm{P}(\mathrm{S})$ समुच्चय $\mathrm{S}$ का घात समुच्चय $\mathrm{f}(\mathrm{n}) \subset \mathrm{f}(\mathrm{m})$ है जब भी $\mathrm{n}<\mathrm{m}$ है, की संख्या है_______.