- Home
- Standard 11
- Mathematics
मान लें कि $A B C D$ एक चतुर्भुज इस प्रकार है कि, चतुर्भुज के भीतर एक बिंदु $E$ है जो $A E=B E=C E=D E$ को संतुष्ट करता है. मान लें कि $\angle D A B, \angle A B C, \angle B C D$ एक समान्तर श्रेढ़ी $(AP)$ है. तब समुच्चय $\{\angle D A B, \angle A B C, \angle B C D\}$ का माध्य है:
$\frac{\pi}{6}$
$\frac{\pi}{4}$
$\frac{\pi}{3}$
$\frac{\pi}{2}$
Solution

(d)
Since, $\angle D A B, \angle A B C$ and $\angle B C D$ are in $AP \therefore$ Let $\angle D A B=\theta-\alpha, \angle A B C=\theta$ and $\angle B C D=\theta+\alpha$
$\therefore$ Median of $\angle D A B, \angle A B C$ and $\angle B C D=\theta$
From point $E$ all the vertices are at equal distance.
$\therefore A B C D$ is cyclic.
and $\angle A D C=2 \pi-(\theta-\alpha+\theta+\theta+\alpha)$
$\quad=2 \pi-3 \theta$
and $\angle A D C+\angle A B C=\pi$
$\Rightarrow 2 \pi-3 \theta+\theta=\pi$
$\therefore \quad \theta=\frac{\pi}{2}$