माना कि किसी समांतर श्रेणी के $n, 2 n,$ तथा $3 n$ पदों का योगफल क्रमशः $S _{1}, S _{2}$ तथा $S _{3}$ है तो दिखाइए कि $S _{3}=3\left( S _{2}- S _{1}\right)$
Let $a$ and $b$ be the first term and the common difference of the $A.P.$ respectively. Therefore,
$S_{1}=\frac{n}{2}[2 a+(n-1) d]$ .........$(1)$
$S_{2}=\frac{2 n}{2}[2 a+(2 n-1) d]=n[2 a+(2 n-1) d]$ .......$(2)$
$S_{3}=\frac{3 n}{2}[2 a+(3 n-1) d]$ ..........$(3)$
From $(1)$ and $(2),$ we obtain
$S_{2}-S_{1}=n[2 a+(2 n-1) d]-\frac{n}{2}[2 a+(n-1) d]$
$=n\left\{\frac{4 a+4 n d-2 d-2 a-n d+d}{2}\right\}$
$=n\left[\frac{2 a+3 n d-d}{2}\right]$
$=\frac{n}{2}[2 a+(3 n-1) d]$
$\therefore 3\left(S_{2}-S_{1}\right)=\frac{3 n}{2}[2 a+(3 n-1) d]=S_{3}$ [ From $(3)$ ]
Hence, the given result is proved.
$p,\;q,\;r$ समान्तर श्रेणी में एवं धनात्मक हैं तो वर्ग समीकरण $p{x^2} + qx + r = 0$ के मूल वास्तविक होंगे, यदि
माना कि $AP ( a ; d )$ एक अनंत समान्तर श्रेणी (infinite arithmetic progression) के पदों का समुच्चय (set) है जिसका प्रथम पद $a$ तथा सर्वान्तर (common difference) $d >0$ है। यदि $AP (1 ; 3) \cap \operatorname{AP}(2 ; 5) \cap AP (3 ; 7)=$ $AP ( a ; d )$ है, तब $a + d$ बराबर . . . . .
अनुक्रम में प्रत्येक के प्रथम पाँच पद लिखिये, जिनका $n$ वाँ पद दिया गया है
$a_{n}=n \frac{n^{2}+5}{4}$
दी गई परिभाषाओं के आधार पर निम्नलिखित प्रत्येक अनुक्रम के प्रथम तीन पद बताइए
$a_{n}=\frac{n-3}{4}$
श्रेणी $2,\,5,\,8...$ के प्रथम $2n$ पदों का योग, श्रेणी $57,\,59,\,61...$ के प्रथम $n$ पदों के योग के बराबर हो तो $n$ का मान होगा