मान लें कि $N$ एक धनात्मक संख्याओं का समुच्चय हैं। सभी $n \in N$ के लिए मान लें कि

$f_n=(n+1)^{1 / 3}-n^{1 / 3}$ एवं $A=\left\{n \in N : f_{n+1}<\frac{1}{3(n+1)^{2 / 3}} < f_n\right\}$ तब

  • [KVPY 2019]
  • A

    $A=N$

  • B

    $A$ एक सीमित समुच्चय है।

  • C

    $A$ का $N$ में पूरक समुच्चय $(complimentary\,set)$ अरिक्त $(nonempty)$ है, परंतु सीमित है।

  • D

    $A$ एवं $A$ का $N$ में पूरक समुच्चय दोनों ही असीमित है।

Similar Questions

माना $f : N \rightarrow R$ एक फलन इस प्रकार है कि प्राकृत संख्याओं $x$ तथा $y$ के लिए $f(x+y)=2 f(x) f(y)$ है । यदि $f(1)=2$ है, तो $\alpha$ का मान, जिसके लिए $\sum \limits_{ k =1}^{10} f (\alpha+ k )=\frac{512}{3}\left(2^{20}-1\right)$  सत्य हो, होगा

  • [JEE MAIN 2022]

एकैकी फलन

$f :\{ a , b , c , d \} \rightarrow\{0,1,2, \ldots, 10\}$

की संख्या, ताकि $2 f ( a )- f ( b )+3 f ( c )+ f ( d )=0$

है, होगी

  • [JEE MAIN 2022]

सभी वास्तविक $x \neq 3$ के लिए फलन $f(x)=\frac{16 x^2-96 x+153}{x-3}$ को परिभाषित करें । $f(x)$ का सबसे छोटा धनात्मक मान है ?

  • [KVPY 2017]

माना $\mathrm{A}=\{1,2,3,4,5\}$ तथा $\mathrm{B}=\{1,2,3,4,5,6\}$ हैं। तो $f(1)+f(2)=f(4)-1$ को संतुष्ट करने वाले फलनों $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ की संख्या है

  • [JEE MAIN 2023]

फलन $f(x)=\frac{\cos ^{-1}\left(\frac{x^2-5 x+6}{x^2-9}\right)}{\log _e\left(x^2-3 x+2\right)}$ का प्रांत है

  • [JEE MAIN 2022]