मान लें कि $N$ एक धनात्मक संख्याओं का समुच्चय हैं। सभी $n \in N$ के लिए मान लें कि

$f_n=(n+1)^{1 / 3}-n^{1 / 3}$ एवं $A=\left\{n \in N : f_{n+1}<\frac{1}{3(n+1)^{2 / 3}} < f_n\right\}$ तब

  • [KVPY 2019]
  • A

    $A=N$

  • B

    $A$ एक सीमित समुच्चय है।

  • C

    $A$ का $N$ में पूरक समुच्चय $(complimentary\,set)$ अरिक्त $(nonempty)$ है, परंतु सीमित है।

  • D

    $A$ एवं $A$ का $N$ में पूरक समुच्चय दोनों ही असीमित है।

Similar Questions

माना $\mathrm{A}=\{1,2,3,5,8,9\}$ है। तब संभव फलनों $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{A}$ की संख्या ताकि प्रत्येक $\mathrm{m}, \mathrm{n} \in \mathrm{A}$ के लिये $\mathrm{f}(\mathrm{m} \cdot \mathrm{n})=\mathrm{f}(\mathrm{m}) \cdot \mathrm{f}(\mathrm{n})$ है जिसमें $\mathrm{m} \cdot \mathrm{n} \in \mathrm{A}$ है, होगी_____________.

  • [JEE MAIN 2023]

यदि $f:R \to R$ तथा $g:R \to R$ इस प्रकार है कि $f(x) = \;|x|$ तथा $g(x) = \;|x|$ प्रत्येक $x \in R$ के लिए, तब $\{ x \in R\;:g(f(x)) \le f(g(x))\} = $

फलन $f(x) = {\sin ^2}({x^4}) + {\cos ^2}({x^4})$ का परिसर है

इस प्रश्न में सभी वास्तविक संख्याओं का समुच्चय $R$ द्वारा निर्देशित किया गया है। मान लीजिये कि प्रत्येक $x \in R$ के लिए फलन $f$ इस प्रकार है कि $f(x)+\left(x+\frac{1}{2}\right) f(1-x)=1$. इस स्थिति में $2 f(0)+3 f(1)$ का मान होगा :

  • [KVPY 2014]

${\sin ^{ - 1}}\left[ {{{\log }_3}\left( {\frac{x}{3}} \right)} \right]$ का डोमेन (प्रान्त) है

  • [AIEEE 2002]