संख्या $15^2 \times 5^{18}$ को यदि आधार $(base)$ $10$ में लिखा जाए, तब इसके अंकों का योग $S$ है। तब
$S < 6$
$6 \leq S < 140$
$140 \leq S < 148$
$S \geq 148$
माना $\sum_{n=0}^{\infty} \frac{n^3((2 n) !)+(2 n-1)(n !)}{(n !)((2 n) !)}=a e+\frac{b}{e}+c\ $है, जहाँ $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathbb{Z}$ तथा $\mathrm{e}=\sum_{\mathrm{n}=0}^{\infty} \frac{1}{\mathrm{n} !}$ है तो $\mathrm{a}^2-\mathrm{b}+\mathrm{c}$ बराबर है
यदि ${\log _k}x.\,{\log _5}k = {\log _x}5,k \ne 1,k > 0$ हो, तब $x$ का मान होगा
माना तीन भिन्न धनात्मक वास्तविक संख्याओं $a, b, c$ के लिए $(2 a)^{\log _e a}=(b c)^{\log _e b}$ तथा $b^{\log _e 2}=a^{\log _e c}$ हैं। तो $6 \mathrm{a}+5 \mathrm{bc}$ बराबर है____________.
यदि ${a^x} = b,{b^y} = c,{c^z} = a$ हो, तो $xyz $ का मान होगा
माना कि $a=3 \sqrt{2}$ और $b=\frac{1}{5^{1 / 6} \sqrt{6}}$ हैं। यदि $x, y \in R$ इस प्रकार हैं कि
$3 x+2 y=\log _a(18)^{\frac{5}{4}} \quad \text { और }$
$2 x-y=\log _b(\sqrt{1080}),$
तब $4 x+5 y$ बराबर. . . . .है।