संख्या $15^2 \times 5^{18}$ को यदि आधार $(base)$ $10$ में लिखा जाए, तब इसके अंकों का योग $S$ है। तब
$S < 6$
$6 \leq S < 140$
$140 \leq S < 148$
$S \geq 148$
यदि ${x^{\frac{3}{4}{{({{\log }_3}x)}^2} + {{\log }_3}x - \frac{5}{4}}} = \sqrt 3 $ हो, तब $x$ है
यदि $a = {\log _{24}}12,\,b = {\log _{36}}24$ तथा $c = {\log _{48}}36$ हो, तब $1+abc $ बराबर है
यदि $\frac{1}{{{{\log }_3}\pi }} + \frac{1}{{{{\log }_4}\pi }} > x$ हो, तब $x =$
माना तीन भिन्न धनात्मक वास्तविक संख्याओं $a, b, c$ के लिए $(2 a)^{\log _e a}=(b c)^{\log _e b}$ तथा $b^{\log _e 2}=a^{\log _e c}$ हैं। तो $6 \mathrm{a}+5 \mathrm{bc}$ बराबर है____________.
समीकरण $x ^{\left(16\left(\log _5 x \right)^3-68 \log _5 x \right)}=5^{-16}$
को संतुष्ट करने वाले $x$ के सभी धनात्मक वास्तविक मानों (positive real values) का गुणनफल (product)
. . . . . है।