14.Probability
hard

Let $M$ be the maximum value of the product of two positive integers when their sum is $66$. Let the sample space $S=\left\{x \in Z: x(66-x) \geq \frac{5}{9} M\right\}$ and the event $A=\{ x \in S : x$ is a multiple of $3$ $\}$. Then $P ( A )$ is equal to

A

$\frac{15}{44}$

B

$\frac{1}{3}$

C

$\frac{1}{5}$

D

$\frac{7}{22}$

(JEE MAIN-2023)

Solution

$M=33 \times 33$

$x(66-x) \geq \frac{5}{9} \times 33 \times 33$

$11 \leq x \leq 55$

$A:\{12,15,18, \ldots .54\}$

$P(A)=\frac{15}{45}=\frac{1}{3}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.