ધારો કે $R$ એ ، જો $2 a+3 b$ એ $5$ નો ગુણિત હોય, તો $a R b, a, b \in N$ ' મુજબ વ્યાખ્યાયિત $N$ પરનો સંબંધ છે. તો $R$ એ
સ્વવાચક નથી
પરંપરિત છે પરંતુ સંમિત નથી
સંમિત છે પરંતુ પરંપરિત નથી
સામ્ય સંબંધ છે.
$R$ એ વાસ્તવિક સંખ્યા પરનો સંબંધ છે કે જેમાં $nm \ge 0$ હોય તો $R$ એ . . .
ત્રણ, $\{a, b, c \}$ પરનો સંબંધ $R =\{( a , b ),( b , c )\}$ સંમિત અને પરંપરિત બને તે માટે તેમાં ન્યુનતમ ઘટકો ઉમેરવા પડે.
સંબંધ $R$ એ ગણ $A = \{1, 2, 3, 4, 5\}$ પર વ્યાખ્યાયિત હોય તો $R = \{(x, y)$ : $|{x^2} - {y^2}| < 16\} $ =
ત્રણ સભ્યો ધરાવતા ગણ પર કેટલા સ્વવાચક સંબંધો મળે?
જો $R$ અને $S$ એ ગણ $A$ પરના અરિકત સંબંધ છે તો આપેલ વિધાન પૈકી ... અસત્ય છે.