3 and 4 .Determinants and Matrices
hard

ધારો કે $A=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 4 & -1 \\ 0 & 12 & -3\end{array}\right)$. તો શ્રેણિક $( A + I )^{11}$ના વિકર્ણી ઘટકોનો સરવાળો $............$ છે.

A

$3144$

B

$4094$

C

$4097$

D

$2050$

(JEE MAIN-2023)

Solution

$A^2=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 4 & -1 \\ 0 & 12 & -3\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 4 & -1 \\ 0 & 12 & -3\end{array}\right] =\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 4 & -1 \\ 0 & 12 & -3\end{array}\right]= A$

$\Rightarrow A ^3= A ^4=\ldots \ldots= A ( A + I )^{11}={ }^{11} C _0 A ^{11}+{ }^{11} C _1 A ^{10}+\ldots . .{ }^{11} C _{10} A +{ }^{11} C _{11} I$

$=\left({ }^{11} C _0+{ }^{11} C _1+\ldots .{ }^{11} C _{10}\right) A + I$ $=\left(2^{11}-1\right) A + I =2047 A + I$

$\therefore$ Sum of diagonal elements $=2047(1+4-3)+3$

$=4094+3=4097$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.