- Home
- Standard 12
- Mathematics
ધારો કે $A=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 4 & -1 \\ 0 & 12 & -3\end{array}\right)$. તો શ્રેણિક $( A + I )^{11}$ના વિકર્ણી ઘટકોનો સરવાળો $............$ છે.
$3144$
$4094$
$4097$
$2050$
Solution
$A^2=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 4 & -1 \\ 0 & 12 & -3\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 4 & -1 \\ 0 & 12 & -3\end{array}\right] =\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 4 & -1 \\ 0 & 12 & -3\end{array}\right]= A$
$\Rightarrow A ^3= A ^4=\ldots \ldots= A ( A + I )^{11}={ }^{11} C _0 A ^{11}+{ }^{11} C _1 A ^{10}+\ldots . .{ }^{11} C _{10} A +{ }^{11} C _{11} I$
$=\left({ }^{11} C _0+{ }^{11} C _1+\ldots .{ }^{11} C _{10}\right) A + I$ $=\left(2^{11}-1\right) A + I =2047 A + I$
$\therefore$ Sum of diagonal elements $=2047(1+4-3)+3$
$=4094+3=4097$