ધારો કે $R$ એ $N \times N$ પરનું નીચે મુજબ વ્યાખ્યાયિત સંબંધ છે: "જો $(a, b) R (c, d)$ તો અને તો $\gamma a d(b-c)=b c(a-d)$ ".તો $R............$.
સંમિત છે, પરંતુ સ્વવાયક કે પરંપરિત નથી
પરંપરિત છે, પરંતુ સ્વવાયક કે સંમિત નથી
પરંપરિત છે, પરંતુ સ્વવાચક કે સંમિત નથી
સંમિત અને પરંપરિત છે, પરંતુ સ્વવાચક નથી
જો $R$ એ $m$ ઘટક ધરાવતા શાન્ત ગણ $A$ થી $n$ ઘટક ધરાવતા શાન્ત ગણ $B$ પરનો સંબંધ હોય તો $A$ થી $B$ પરના સંબંધની કુલ સંખ્યા મેળવો.
સંબંધ $R$ એ ગણ $A$ પરનો વિસંમિત સંબંધ થવા માટે $(a,\,b) \in R \Rightarrow (b,\,a) \in R$ એ .
ધારો કે $\mathbb{N} \times \mathbb{N}$ પર એક સંબંધ $\mathrm{R}$ એ "( $\left.x_1, y_1\right) \mathrm{R}\left(x_2, y_2\right)$ તો અને તો જ $x_1 \leq x_2$ અથવા $y_1 \leq y_2$ " પ્રમાણે વ્યાખ્યાયિત કરેલ છે.
બે વિધાનો ધ્યાને લો:
($I$) $\mathrm{R}$ સ્વવાચક છે પરંતુ સંમિત નથી .
($II$) $R$ પરંપરિત છે
તો નીચેના પૈકી કયુ એક સાયું છે
ધારો કે $A=\{1,2,3\} .$ સાબિત કરો કે $(1,2) $ અને $(2,3)$ ને સમાવતા સ્વવાચક અને પરંપરિત હોય, પરંતુ સંમિત ન હોય તેવા સંબંધોની સંખ્યા ત્રણ છે.
ધારો કે $A=\{2,3,6,8,9,11\}$ અને $B=\{1,4,5,10,15\}$, ધારો કે $R$ એ $A \times B$ પર ' $(a, b) R(c, d)$ તો અને તો જ $3 a d-7 b c$ બેકી સંખ્યા છે' પ્રમાણે વ્યાખ્યાયિત સંબંધ છે. તો સંબંધ $R$ :