ધારોકે $\left(x^{\frac{2}{3}}+\frac{2}{x^3}\right)^{30}$ના વિસ્તરણમાં $x^{-\alpha}$ વાળો પદ હોય તેવો $\alpha > 0$ નાનામાં નાની સંખ્યા $\beta x^{-\alpha}, \beta \in N$ છે. તો $\alpha$ ની કિમંત મેળવો.
$2$
$4$
$6$
$8$
જો $\left(\frac{4 x}{5}-\frac{5}{2 x}\right)^{2022}$ ના દ્વિપદી વિસ્તરણમાં છેલ્લેથી $1011$ મું પદ એ શરૂઆતના $1011$ માં પદનું $1024$ ગણુું હોય, તો $|x|=......$
$(\mathrm{x}+\sqrt{\mathrm{x}^{2}-1})^{6}+(\mathrm{x}-\sqrt{\mathrm{x}^{2}-1})^{6}$ ના વિસ્તરણમાં $x^{4}$ અને $x^{2}$ ના સહગુણકો $\alpha$ અને $\beta$ હોય તો . . . .
${\left( {\sqrt {\frac{x}{3}} + \frac{3}{{2{x^2}}}} \right)^{10}}$ ના વિસ્તરણમાં અચળ પદ મેળવો.
$\left(x^4-\frac{1}{x^3}\right)^{15}$ ના વિસ્તરણમાં $x^{18}$ નો સહગુણક $........$ છે.
દ્વિપદી પ્રમેયનો ઉપયોગ કરી, $(1+2 x)^{6}(1-x)^{7}$ ના ગુણાકારમાં $x^{5}$ નો સહગુણક શોધો.