7.Binomial Theorem
hard

माना $\alpha>0$ न्यूनतम संख्या है, जिसके लिए $\left(\mathrm{x}^{\frac{2}{3}}+\frac{2}{\mathrm{x}^3}\right)^{30}$ के प्रसार का एक पद $\beta \mathrm{x}^{-\alpha}, \beta \in \mathbb{N}$ है तो $\alpha$ बराबर है

A

$2$

B

$4$

C

$6$

D

$8$

(JEE MAIN-2023)

Solution

$T _{ r +1}={ }^{30} C _{ r }\left( x ^{2 / 3}\right)^{30- r }\left(\frac{2}{ x ^3}\right)^{ r }$

$={ }^{30} C _{ r } \cdot 2^{ r } \cdot x ^{\frac{60-11 r }{3}}$

$\frac{60-11 r }{3} < 0 \Rightarrow 11 r > 60 \Rightarrow r >\frac{60}{11} \Rightarrow r =6$$T _7={ }^{30} C _6 \cdot 2^6 x ^{-2}$

We have also observed $\beta={ }^{30} C _6(2)^6$ is a natural number.

$\therefore \alpha=2$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.